
 

 

 
 

Requirements and Guidance for 
Model Calibration, Validation, 
Uncertainty, and Verification 

For Soil Enrichment Projects 
 
 

Version 1.1a 
April 2022 

 
 

 



Model Requirements and Guidance for SEP Projects  Version 1.1a, April 2022 

 

Table of Contents 
1 Introduction ....................................................................................................................... 1 

2 Model Calibration .............................................................................................................. 3 

2.1 Guidance on Model Calibration using Frequentist Approaches .................................... 5 

2.2 Guidance on Bayesian Methods for Calibration, Validation, and Error ......................... 5 

2.3 Guidance on Cross-Validation Approaches .................................................................. 7 

3 Validating and Reporting Model Performance and Uncertainty ...................................10 

3.1 Declare Practice Categories Requiring Evaluation ......................................................10 

3.2 Define the Project Domain ..........................................................................................11 

3.2.1 Declare Project Crop Functional Groups ..............................................................11 

3.2.2 Declare Project Land Resource Regions .............................................................11 

3.2.3 Declare Project Soils ............................................................................................11 

3.3 Gather Data to Validate Model Performance and Uncertainty .....................................12 

3.3.1 Special Rules for Practice Categories ..................................................................14 

3.4 Assessment of Bias for Each PC/CFG/ES Combination .............................................16 

3.5 Using Data to Evaluate Model Prediction Error ...........................................................20 

3.6 Reporting on Model Validation ....................................................................................23 

4 Substitution for Missing Crops .......................................................................................25 

5 Verification of Model Usage ............................................................................................25 

6 References .......................................................................................................................27 
 
 
  



Model Requirements and Guidance for SEP Projects  Version 1.1a, April 2022 

 

Definitions 
 
Calibration  Any process involving the adjustment of parameters and constants within a model 

so that the model more accurately estimates measured values. 
 

Validation The process of evaluating model performance relative to measured values, with a 
validated model having demonstrated satisfactory performance in terms of 
goodness of fit and characterization of model prediction error. Model validation 
typically uses datasets independent of datasets used in model calibration, unless 
(e.g., in a data-limited situation) a statistical approach like k-folding is applied. 
 

Goodness of fit A characterization of the discrepancy between measured and modeled values.  
 

Model prediction 
error 

The uncertainty in a model’s prediction as determined from comparison to 
measurements, required in this document to be the same measurements used to 
validate the model. 
 

Parameter sets The set of mathematical values and constants contained in a model that 
characterizes the biophysical and biogeochemical system being represented. 
Depending on the model and the application, the value of an individual parameter 
within a given parameter set might be defined as a single number, a set of 
numbers with declared rules for choosing from them, and/or a probability 
distribution.  
 

Model-driving input 
data 

Numeric data provided to the model needed to execute a model run, such as 
meteorological time series data, or rates of fertilizer application. 
 

Model version A uniquely traceable record of source code, internal parameters, and ancillary 
inputs that are needed to reproduce a given model output (collectively the “model 
files”). A model version must change any time there is a change in any of the 
model files. 
 

Overfitting Model parameterization that is too specific to the training data, yielding 
unrealistically high model performance under the exact conditions used for 
testing but typically much lower performance on new data. Detecting overfitting is 
one key goal of a robust validation method. 
 

Pooled 
measurement 
uncertainty 

An estimate of the typical uncertainty associated with experimental measurements 
of the emissions change resulting from a given practice change. It is computed 
from the observed variation between replicate measurements. 
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1 Introduction 
The purpose of this document is to provide a standardized approach to test model performance 
as a component of credit quantification in a SEP project. This document must be used for any 
gas or pool for which models are employed for quantification outside of the protocol equations. 
A Validation Report generated by following this document is designed to support independent 
expert review of a model proposed for use in a SEP project, grouping model testing by 
combinations of geographic regions, crop types and practice changes where a model may be 
used to issue credits. The Validation Report is also designed to support project verification, 
demonstrating that a model is valid and used appropriately to quantify changes to greenhouse 
gas sources, sinks, and/or reservoirs for a specific project.  
 
The requirements and guidance presented in this document fall into two main categories: 
 

1. Standardizing best practices for SEP-appropriate use of peer-reviewed observed 
experimental data to test a model and determine model prediction error; and, 

2. Standardizing demonstration of acceptable model fit and a lack of bias when a model is 
being used to estimate soil organic carbon (SOC) stock change and, if applicable to the 
project, flux change of N2O and CH4.  

 
Requirements falling into category 1 are meant to address the importance of using high-quality 
observed experimental data of soil emissions reductions as the basis of evaluating model 
performance. Changes in agricultural practices have a great diversity of impacts on soil 
emissions. Soil emissions are also highly variable, with rapid growth of new studies and 
experimental methods to capture variance, increase precision, and reduce uncertainty. Further, 
the format of experimental data can be highly variable across published studies. Requirements 
described in this document are meant to ensure that appropriate and consistent methods are 
followed to locate, aggregate, and use observed data for model improvement and testing. 
 
Requirements falling into category 2 are meant to provide SEP-specific guidance for using the 
above datasets for model calibration, validation, and the determination of a model’s prediction 
error, in the context of measurement uncertainties. These are highly technical processes that 
vary widely across areas of scientific research. The Validation Report aims to ensure that model 
validation is specific to the model being proposed for use in a SEP project, is appropriate for the 
cropping system and biophysical conditions occurring in the project, and that validation 
requirements related to the assessment of model bias and fit have been met. 
 
A discussion regarding verification requirements for the proper implementation of this guidance 
can be found in Section 5 of this document, as well as Section 8.3.1 of the Soil Enrichment 
Protocol (SEP).1  
 
All stakeholders making use of this guidance should contact the Reserve to ensure they are 
using the most up-to-date version of this guidance. Project developers and verifiers must use 
the version of this document that is in place as of the first date of the relevant reporting period. 
In the cases where multiple reporting periods are being verified at once, project developers and 
verifiers should seek Reserve guidance and approval as to which version of this guidance 
should be applied to which reporting period.  

 
1 The current version of the SEP may be accessed at: http://www.climateactionreserve.org/how/protocols/soil-
enrichment/.  

http://www.climateactionreserve.org/how/protocols/soil-enrichment/
http://www.climateactionreserve.org/how/protocols/soil-enrichment/
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Options and requirements for submitting Validation Reports are outlined in Section 3.6. 
Validation Reports must show that all requirements for a specific project have been met, 
including proof that the same model version and parameter sets are used, and that all project 
domain and crop functional group/practices category combinations have met minimum 
requirements for model validation. Validation Reports must either be independently assessed by 
an approved third-party entity or accepted for publication in one of the peer-reviewed 
publications listed in Section 3.6. Model Validation Reports will be public documents.  
 
For each subsequent monitoring report, as long as a project area remains constant, or is only 
expanded to include new fields that already fit within the validated project domain, the existing 
Validation Report can be used. If the project is expanded to new practice effects, new crop 
functional groups, or the model is changed (using new model calibrations, changed 
parameters/parameter sets, or a different model, following guidance described in Section 6.5 of 
the SEP protocol), the Validation Report needs to be revised, reviewed by an approved third-
party entity, and re-submitted.  
 
The overall flow of the requirements for the use of models is illustrated in Figure 1.1., below. 
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Figure 1.1. Steps Related to the Use of Models for Quantification in SEP Projects 

2 Model Calibration 
Model calibration, parameterization, and validation are often poorly defined concepts. For the 
purposes of this document, calibration is defined as any process involving the adjustment of 
parameters and constants within a model so that the model more accurately simulates 
measured values.  
 
Model calibration is a variable and model-specific set of processes. Some examples include:  
 
 Statistical procedures to optimize rates of mass flow and the simulation of internal model 

pools (e.g., optimizing the allocation of daily net primary production to root growth to 
more accurately simulate observed root growth for a given crop); 
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 Adjusting model parameters with directly measured values (e.g., setting the simulated 
fraction of plant residue left on the soil surface after a method of harvest using an 
average of observed values); 

 ‘Tuning’ a set of model parameters that may not be able to be measured directly using 
overall model performance and an understanding of model sensitivities (e.g., adjusting a 
constant downregulating the rate of soil biological processes under moisture-limited 
conditions using measures of soil respiration).  

 
Deterministic models, where the same inputs always result in the same outputs, may have 
different calibration processes than stochastic models, which include random variability. 
Mechanistic models, which are based on mathematical representations of mechanisms within 
the modeled system, are more generalizable with fewer data than empirical models, which are 
based on statistical synthesis of observations and cannot be extended outside of where 
observations are available. 
 
For any model used in a SEP project, model calibration must be independent from model 
validation (i.e., using a separate process and separate datasets). Further, for either process, the 
quality of measured datasets (i.e., rigor of the experimental design, accuracy of observations, 
applicability to the system that a model is being calibrated or validated to simulate) will 
determine the quality of the model (aka, “garbage in, garbage out”). Separation of datasets for 
model calibration and validation may be done manually, if it can be shown that both datasets 
are comparable in their applicability to the system that is being simulated. Separation may also 
be done statistically using cross-validation methods (Section 2.3). Within independent datasets 
for model calibration and validation, it is acceptable to use statistical approaches like 
bootstrapping to make use of datasets that are more limited.  
 
For the purposes of this protocol, calibration and validation data should be demonstrably 
independent. This requirement can be met if datasets used for calibration and validation do not 
overlap in experimental research locations and are not taken from the same experimental study. 
If calibration and validation datasets for SOC change or trace gas flux do overlap in either 
experimental study or research location, independence between the datasets used for 
calibration and validation should be demonstrated at the crop functional group/practice category 
combination level (Section 3.2). For example, if root measurements and N2O flux measurements 
from a subset of treatments in a tilled soybean/corn rotation experiment were used for model 
calibration, the N2O flux measurements from the remaining treatments in the same study could 
not be used as validation data for either the corn or the soy crop functional group and tillage 
practice effect combinations. However, if at the same research facility N2O flux was measured in 
a demonstrably separate corn/soy rotation experiment (separate in space or time, with separate 
experimental design or intention), those data would be permissible for inclusion in model 
validation. Depending on the model, in some cases it may be defensible to use cultivar-specific 
measurements of crop growth to calibrate modeled crop growth, while using SOC change or 
trace gas flux change measurements from the same study to validate model performance. Such 
cases should be clearly explained and presented for review in the Validation Report.  
 
The protocol does not prescribe a model calibration procedure. However, the calibration 
procedure must be reported to ensure model parameters and parameter sets were generated 
appropriately (see SEP protocol Section 6.5, item 3), as well as meet the requirements that: 
 

1. The parameter sets used when validating the model are the same used when the model 
is applied to simulate baselines and project practices; and,  

2. That the data used for model calibration and validation are separate.  
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‘Parameter sets’, in this context, mean all values internal to a model that determine how input 
data drive model performance and behavior, and that are changed using processes 
independent of model-driving input datasets. This means model parameters that are not 
dependent on input datasets when the model is run (for example through a Bayesian statistical 
procedure) must be declared and shown to be set appropriately following the above calibration 
requirements. It is encouraged for model parameters to be as generalizable as possible across 
the project domain, with minimal use of different parameter sets. However, it is acceptable for 
different parameter sets to be used as long as they are defined at scales no smaller than LRRs, 
(i.e., the same parameter set is used for all simulations within a given LRR). Parameter sets 
must be declared for each project LRR and should be used to simulate all crop functional 
groups and practice categories within that LRR. An exception may be made for crop growth 
parameters to be set at scales finer than LRRs, for example to reflect different maturity groups 
within an LRR. The use of varying crop growth parameters must be clearly defined in the 
Validation Report and presented as parameter sets specific to each LRR where the crop is 
simulated, to ensure their appropriate use in model validation and SEP project simulations.  
 
Because verifying that the model behaves as validated requires knowing all values that drive 
model behavior are set as validated, the definition of ‘parameter set’ above means it is not 
acceptable to validate a model and then adjust declared model parameters when using the 
model to simulate project baselines and practices. If a model approach uses data to adjust 
internal model parameters dynamically while running simulations—such as through the use of 
data assimilation for components of the model—this should be clearly specified as part of the 
model’s structure and required inputs, such that it is clear how this model component is used in 
the same way for model validation as it will be used to model simulations in an SEP project. 
These components should be clearly differentiated from declared model parameters for the 
purposes of model validation, such that both can be easily verified.  All declared parameter sets 
must be validated following the guidance in section 3. If the minimums described in Section 3 do 
not result in all parameter sets being validated, and additional steps are not taken to validate all 
parameter sets, unvalidated parameter sets cannot be approved for use in the project. 
 
Because biogeochemical models often contain a large number of parameters, different 
strategies can be employed to perform calibration. General guidance for frequentist and 
Bayesian approaches are provided in Sections 2.1 and 2.2. 

2.1 Guidance on Model Calibration using Frequentist Approaches 
Wallach et al. (2019) provide helpful guidance on common approaches to frequentist model 
calibration, including how to decide how many parameters to estimate, which parameters to 
estimate, whether to calibrate in stages, and how to avoid over-parameterization (i.e., where the 
model fits the data well but has poor predictive ability). Examples of model calibration are 
abundant in the peer-review literature and span a wide range of complexity and automation in 
their approaches (e.g., Bruun et al. 2003, Yeluripati et al. 2009, Liang et al. 2009). 

2.2 Guidance on Bayesian Methods for Calibration, Validation, and 
Error 

Model calibration can also be completed using Bayesian statistical methods, which apply a 
probabilistic approach to integrating existing knowledge and observed data (Wikle & Berliner, 
2007). Bayesian statistical approaches are an emerging area of development in soil 
biogeochemical modeling. They typically require implementing Markov Chain Monte Carlo 
methods for sampling probability distributions. This can be computationally demanding with soil 
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biogeochemical models, which can have dozens to hundreds or more parameters. Parameter 
values in these types of models can also be difficult to constrain (i.e., use data or existing 
knowledge to set limits on the range of values that a parameter may have, and define its 
probability distribution across that range). When there is little prior knowledge about a 
parameter value, ‘uninformative priors’ or ‘weakly informative priors’ are used to represent what 
is known or believed about the parameter. The resulting posterior distribution, or the distribution 
that represents the integration of prior knowledge and observed data, can be wide unless the 
observed data are strongly informative, i.e., have highly accurate and precise values. The 
following figure illustrates a strong prior belief (A) versus a weak prior belief (B). 

 
Figure 2.1. Comparison of Prior and Posterior Distributions when there is Strong Prior Belief Versus 

Weak Prior Belief 
(E.g., strong and consistent evidence and prior analyses (A) versus weak or variable evidence 
or no prior analyses (B).) 

 
Across dozens or hundreds of parameters, Bayesian methods can be complex to implement 
and require large quantities of data. Despite these challenges, Bayesian methods provide a 
coherent mathematical framework to integrate diverse sources of information into model 
parameterization, as evidenced by their central role in the developing field of Ecological 
Forecasting (Dietze, 2017), as well as in the Predictive Ecosystem Analyzer Project data-model 
integration system.2 A Bayesian approach is encouraged for model validation and model 
prediction error, as the confidence intervals around model predictions will be directly based on 
the availability and variance of observed data. Figure 2.2 presents a conceptual workflow for a 
Bayesian approach to these analyses. A Bayesian approach also allows predictive error to be 
calculated from the posterior distributions of model parameters and of hyperparameters 
associated with structural uncertainty, and thus to be propagated to the posterior predictive 
intervals of individual observations. 
 

 
2 Accessible at: pecanproject.org 

http://pecanproject.org/
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Figure 2.2. Conceptual Framework for Bayesian Approach to Model Calibration and Validation 

In this example model calibration is a separate analytical process from validating model 
performance and determining model prediction error. In a fully integrated analysis, informative 
posteriors from model calibration might be used as priors in model validation. 

2.3 Guidance on Cross-Validation Approaches 
When evaluating statistical models in the presence of limited data, it is common to use cross-
validation to evaluate the predictive performance of a given model against all available 
datapoints while guarding against overfitting. Traditionally, model validation is performed by 
dividing the available data into two independent, non-overlapping groups of datasets; one for 
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training the model and the other “hold-out” group for model validation (Larson, 1931; Mosteller 
and Wallace, 1963). This traditional approach does not use all the available data for training, 
resulting in loss of information (Browne, 2000) and potentially poorer prediction performance. To 
improve information efficiency and prediction performance, several methods of using the same 
data for both training and validation have been proposed, including k-fold cross-validation 
(Mosier, 1951; Mosteller and Tukey, 1968; Refaeilzadeh et al., 2009), leave-one-out cross-
validation (Geisser, 1975; Stone, 1976), and resampling validation via the “.632 bootstrap” 
(Efron and Tibshirani, 1997). All of these methods improve prediction performance by repeating 
hold-out validation multiple times across different subsets of the data and provide estimates of 
model uncertainty from the distribution of prediction performance across all results. This list is 
only illustrative; whatever approach is used, a validation report that uses a cross-validation 
approach must follow the guidelines below to demonstrate independence of calibration and 
validation data, correctly estimate the uncertainty of the model when applied to observations not 
in the validation set and validate the model using the same parameter values that will be used 
during credit estimation. 
 

2.3.1.1 Demonstrate Independence 
Because cross-validation makes use of the same data for both calibration and validation, when 
using k-fold cross-validation the independence between calibration and validation data must be 
demonstrated for each fold following the same principles discussed elsewhere in section 2. The 
demonstration should also explain how fold assignment accounted for any statistical 
dependencies that were induced by data structure, such as temporal or spatial or phylogenetic 
correlations between sites, soils or climate factors. For more details including recommended 
methods for constructing cross-validation folds in structured data, see Roberts et al. (2017). 
 

2.3.1.2 Use All the Cross-Validated Parameters 
Because cross-validation produces a range of results rather than a single output, it is 
understood that the parameter values within the declared set will be updated throughout the 
cross-validation process (e.g. each fold of a k-folding method will validate against a different 
calibration and therefore different parameter values). However, the method of choosing the final 
parameter set must be a prespecified part of the cross-validation method, and the parameter 
values identified as the final validated set (whether these are point values or distributions) must 
be the ones used to simulate project baselines and practices.  
 
For example, a Bayesian modeling approach might perform ensemble simulations that draw 
their parameter values from the joint posterior distribution of all the calibrated parameters along 
with hyperparameters associated with structural model uncertainty (Gurung et al., 2020; 
Kennedy and O’Hagan, 2001). As a second example, a model operator might choose to 
collapse the cross-validation results to a single point value for each final parameter but to 
compute model uncertainty from model residuals across all validation folds. In this case 
additional demonstration would be needed to show that the resulting parameterization is 
scientifically reasonable (e.g. where all parameters are uncorrelated it may be sufficient to set 
them to the means of their marginal distributions, but if pairs of parameters are correlated this 
may produce incorrect model behavior) and that it does not understate model uncertainty. 
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2.3.1.3 Report Which Parameters are Calibrated 
Many soil biogeochemical models have parameters numbering in the hundreds, and a model 
developer might choose to focus calibration on updating a selection of the most influential 
parameters while leaving other parameters as constants (Gurung et al., 2020). In this case the 
parameters held fixed can be viewed as a static part of the model structure with any 
miscalibration in their values contributing to the whole-model error term, while the parameters 
adjusted during cross-validation will have their uncertainty explicitly estimated. Because this 
affects interpretation of the cross-validation results, if cross-validation is performed on only a 
subset of model parameters the declared parameter set must indicate which parameters are 
updated during the validation procedure and which are left as constants. As for all validation 
approaches, all parameters must still be included in the declared final parameter set (whether 
they were calibrated or held constant) and the values used during crediting must be the same 
ones used during validation. 
 

2.3.1.4 Document Variance Terms 
For models that partition model uncertainty into multiple error terms, it must be clearly stated 
how the parameters and hyperparameters for these terms were estimated and how they were 
used in the cross-validation. For example, when validating a model that attributes some of the 
observed variance to a “location effect”, the report must specify whether the values used for 
each location in the validation data are the same values estimated for that location during 
calibration or if they are new draws from an estimated distribution of location effects. 
 
 
 

Summary of Requirements Described in Section 2 
 
Required for the Validation Report: 

 Model version, defined as a uniquely traceable record of source code, internal parameters, 
and ancillary inputs that are needed to reproduce a given model output (collectively the “model 
files”). A model version must change any time there is a change in any of the model files. 

 Description of the model calibration process 
 Documentation of all internal model parameter sets, including proof that parameter sets are 

defined at a resolution no finer than one LRR.  
 If there is justification to claim an allowance for crop growth parameter sets to vary within LRRs 

(e.g., varying maturity groups), crop growth parameter sets and their use must be documented 
per each LRR where the crop will be simulated. If using methods such as cross-validation that 
link the calibration and validation processes, also document: (1) the process for determining 
final parameter sets from the range of validation results, (2) which parameters are updated 
during the validation procedure and which are held constant, and (3) how variance terms are 
estimated and used during calibration and validation. 

 Justification for splitting of experimental data between calibration and validation (where 
applicable), clearly described at the crop functional group/practice category/emissions source 
combination level. If using methods such as cross-validation that link the calibration and 
validation processes, demonstrate independence between folds. 

 
Required Upon Request of the Verification Team: 

 Datasets used for model calibration, including but not limited to full citation, experimental 
locations, specific crops and practices studied, LRRs and IPCC climate zones, soil textures 
and clay contents, and number of observations.  
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3 Validating and Reporting Model Performance and 
Uncertainty 

3.1 Declare Practice Categories Requiring Evaluation 
For every practice considered additional within the project (as determined by application of 
Section 3 of the SEP), the model must be shown to have an acceptable goodness of fit and 
unbiased representation of the underlying biogeochemical process governing the effect of that 
practice. To do so, each practice must be binned into the Practice Categories (PCs) shown in 
Table 3.1 to demonstrate the domain of practice effects and the categories requiring evaluation. 
Validating model performance and uncertainty within a practice category can be accomplished 
using any practice effect in the category domain, evaluated using appropriate experimental data 
meeting requirements described below. Projects are encouraged to evaluate a range of practice 
effects in each practice category domain. If the project employs an additional practice change 
which does not fit obviously into one of the practice categories in Table 3.1, guidance must be 
sought from the Reserve. 
 
Table 3.1. Practice Categories and their Associated Practice Effects Requiring Biogeochemical 

Performance Evaluation 
Practice Category Requiring 

Evaluation Domain of Practice Effects 
Inorganic nitrogen fertilizer 
application 

Magnitude, form, timing, or method for nitrogen fertilizer applied, 
with form encompassing inorganic N fertilizers, and method 
encompassing surface, subsurface, or irrigation-based 
application 

Organic amendments application Magnitude, form, timing, method or variation in C:N ratio for 
organic amendments applied. Forms include and are not limited 
to biochar, mulch, compost, and manure, and methods 
encompass surface, subsurface, or irrigation-based application 

Water management/irrigation Magnitude, timing, source or method of irrigation water applied 
Soil disturbance and/or residue 
management 

Soil disturbance including tillage and compaction, and residue 
management encompassing soil exposure after harvest and 
physical incorporation of green manure 

Cropping practices, planting and 
harvesting (e.g., crop rotations, 
cover crops) 

Variety of crops grown, increasing crop rooting depth, may 
include cover crops and soil preparations such as changing soil 
pH through liming 

Grazing practices Any of the following: presence/absence of grazing, stocking 
density, forage type or quality, species of grazers, mixed or 
single species herds, loading weight, grazing time, and 
rest/recovery periods 

 
A project developer must declare all practice effects requiring evaluation for the project. 
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3.2 Define the Project Domain 
For each practice category declared in the project description, the model must be evaluated in 
terms of its fit and bias in estimating emissions reductions. Evaluation of each category begins 
with defining the project domain in terms of its biophysical attributes. Specifically, the project 
developer must declare the unique crop functional groups, land resource regions, and soil 
attributes associated with each declared practice category. 

3.2.1 Declare Project Crop Functional Groups 
Crop functional groups (CFGs) for each practice category must be declared. Individual crop 
types can be grouped into functional groups across crops sharing unique combinations of the 
following attributes: 
 

 N fixation (Y/N), 
 Annual/perennial (A/P) (defined in accordance with the NRCS Conservation Compliance 

categorization of crops3), 
 Photosynthetic pathway (C3/C4/CAM), 
 Growth form (tree/shrub/herbaceous) (trees and shrubs have woody plant growth, 

versus herbaceous species that do not grow woody plant material), 
 Flooded/not flooded 

3.2.2 Declare Project Land Resource Regions 
The full list of land resource regions (LRRs) associated with each practice category must be 
declared.4 LRRs represent distinct combinations of climate, land resource use, and geographic 
features. To support acquisition of studies to validate model performance and uncertainty 
outside the US, IPCC climate zones must be declared for each practice category following the 
climate zone definitions given in the 2006 IPCC Guidelines for National Greenhouse Gas 
Inventories. 

3.2.3 Declare Project Soils 
Soils are to be declared for each practice category in terms of (1) soil textural class and (2) the 
associated clay content5 of that class. NRCS soil texture classes include sand, loamy sand, 
sandy loam, loam, silt loam, silt, sandy clay loam, clay loam, silty clay loam, sandy clay, silty 
clay, and clay.  
 

Summary of Section 3.2 
 
Required for the Validation Report (Types 1 and 3- described Section 3.6) 

 List of combinations of PCs and CFGs occurring in the Project 
 List of combinations of PCs, CFGs, and emissions sources (ESs) validated  
 List of LRRs and IPCC climate zones included in the project domain 
 List of soil texture classes and associated clay contents in the project domain 
 (Type 3 only) Corresponding Type 2 report containing referenced model validation 

 
Required for the Validation Report (Type 2- described Section 3.6) 

 
3 Resource can be found here: 
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/programs/farmbill/?cid=stelprdb1262733  
4 Resource can be found here: 
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/technical/nra/nri/?cid=nrcs143_013721 
5 See Table A-1 for clay contents of NRCS soil textural classes.  
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs143_014055 

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/programs/farmbill/?cid=stelprdb1262733
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/technical/nra/nri/?cid=nrcs143_013721
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs143_014055
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 List of combinations of PCs, CFGs, and ESs validated 
 LRRs and IPCC climate zones for which each combination is validated 
 List of soil texture classes and associated clay contents for which each combination is 

validated 
 
Required Upon Request of the Verification Team 

 List of specific crops and practices occurring in the Project, and a description of how these 
were binned into the PCs and CFGs validated. 

 

3.3 Gather Data to Validate Model Performance and Uncertainty 
 
Requirement 1: Generalized Dataset Attributes 
 
Datasets to validate model performance and uncertainty for each declared PC/CFG/ES 
combination from Section 3.1 must include measurements for each modeled quantity, where the 
modeled quantity is the change in the flux of emissions to the atmosphere for SOC, N2O, and/or 
CH4 that results from the adoption of any practice associated with that effect. Datasets may 
include individual practice categories as well as combinations of practice categories (e.g., 
“stacked” practices), provided the practice category in question is experimentally varied and 
measured within the study. Some hypothetical examples of acceptable experimental treatments 
to evaluate practice categories are given in the following table: 
 
Table 3.3. Examples of Some Permissible Experimental Treatments to be Used in Evaluating Practice 

Categories 
(see Table 3.1 for the complete list of practice effects that can be included in each Practice Category) 

Experimental Treatment Practice Category 
Comparison of two different application rates of 
urea Inorganic nitrogen fertilizer application 

Comparison of conventional tillage using 
moldboard plow to strip tillage Soil disturbance and/or residue management 

Comparison of single-crop rotation to double-crop 
rotation; comparison of bare fallow to cover crop 

Cropping practices, planting and harvesting 
(e.g., crop rotations, cover crops) 

 
Datasets to validate model performance and uncertainty must adhere to the following 
guidelines: 
 
 Measured datasets must be drawn from peer-reviewed and published experimental 

datasets with measurements of the emissions source(s) of interest (SOC stock change 
and/or N2O and CH4 change, as applicable), ideally using control plots to test the 
practice category. 

 Studies must report sufficient information to be modeled, i.e., providing enough 
information that model inputs have low uncertainty relative to modeled results, and the 
model can be appropriately initialized. ‘Enough’ information to initialize and run a model 
accurately is model- and emissions source-specific. Therefore, the reported information 
required to initialize and model a study accurately should be described for the model 
version and parameter sets being validated, and any processes used to address 
unreported information fully described in the Validation Report. 
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 Studies reporting the effects of changing multiple practices at once ("stacked" practice 
changes) may be used provided that the composite of all studies used to validate a 
PC/CFG/ES combination contains at least one study that isolates the effect of the 
practice change being validated. 

 All validation dataset sources must be reported. The same measurement dataset 
sources can be used for validating multiple practice categories, when appropriate. 
Datasets may be used from studies outside of the US. However, the associated IPCC 
climate zone where these datasets were collected should correspond to the declared 
IPCC climate zones of the project.  

 In the case of SOC stocks, repeat measurements of SOC stock change must be able to 
capture multi-year changes, as practice effects on SOC may combine short and long-
term changes in soil biogeochemical processes. Measurements from paired fields 
leveraging space-for-time analysis methods that approximate multi-year changes may 
also be used for SOC validation. Newer methods for SOC stock monitoring are 
becoming available that can observe changes with greater precision at shorter time 
intervals. These methods will be acceptable if there is peer-reviewed support or 
independent expert support approved by the Reserve for their use in SOC monitoring 
and if the methods demonstrate accurate measurement of multi-year impacts on SOC 
stock changes. Measured datasets of SOC stock change may be made at any depth, but 
the model must also predict SOC stock change at the corresponding depth. Thus, a fully 
compiled dataset for validating model performance and uncertainty may contain different 
depths for SOC stock change measurements as long as the model is predicting SOC 
stock change at each corresponding depth.  

 In the case of N2O and CH4 flux, any combination of measurements from chambers 
and/or eddy covariance flux towers are acceptable. Methods of temporal aggregation 
should be documented in the Validation Report (e.g., Mishurov & Kiely, 2011; Turner et 
al., 2016), as well as the portions of the calendar year covered, in aggregate, by all N2O 
and/or CH4 measurements. Justification should be provided when portions of the year 
are missing. 

 Datasets can be drawn from a benchmark database maintained by a third party, if 
approved by the Registry. The use of datasets from a benchmark database should 
include full citation of the database as well as a description of how datasets were 
extracted, including exclusion criteria for any records not used in the validation. 

 Project developers are expected to use a process for selecting data for validating model 
performance and uncertainty that results in the assembly of datasets that are 
representative of the range of peer-reviewed observed results. Project developers must 
describe the methods, selection process, and data manipulations used to create the 
dataset applied in the model validation process. This includes describing search terms 
and databases used to identify available datasets, criteria used to select dataset 
sources, origin of extracted data (e.g., figures, tables, databases with DOI), original units 
of data and data uncertainty, and data manipulations used to convert original units into 
the units described above. The project developer should report the number of validation 
data measurements of each data type (SOC, N2O and CH4) for each project domain 
combination of PC and CFG, and include a histogram showing the range of validation 
data values (e.g., measured SOC change). In the case where validation data are 
unevenly distributed across the project domain (e.g., almost all validation data are 
reported in sandy soils, with only a few in soils with higher clay content), the method 
used to link validation data to model structural error (described in more detail in Section 
3.5 below) should demonstrate that it addresses the discrepancy. 

 
Requirement 2: Specific Dataset Requirements to Validate Model 
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The specific requirements for validating model performance and uncertainty for a PC/CFG/ES 
combination are set based on the geographic extent of a project (i.e., the number of declared 
LRRs), as well as the soil attributes encountered within the project (i.e., the declared soil 
textural classes and clay contents).  
 
The following logic is used to determine the number of declared LRRs required, in total, in the 
combination’s dataset. If the number of declared LRRs is equal to: 
 

 1, then the validation dataset for that combination must include that (declared) LRR; 
 2, then the validation dataset for that combination must include those two (declared) 

LRRs; 
 3 or more, the validation dataset for that combination must include at least 3 

(declared) LRRs.  
 
For all PC/CFG/ES combinations, at least three declared soil textural classes must be 
represented in the validation dataset, and the range in clay contents must span at least 15 
percentage points. When the number of declared soil textural classes is less than three, all 
textural classes that do occur within the project’s geographic extent must be included in the 
dataset, and there must be a range in clay contents spanning at least 15 percentage points. 
Once validated, a PC/CFG/ES combination will be approved for crediting within all declared 
LRRs and for all declared soil textures. 
 
The purpose of these minimums is to ensure testing for generalized model performance, i.e., 
that a model is not hyper-calibrated for a specific combination of factors that leads to poor 
model performance in other contexts. It is in a project’s interest to exceed these minimums and 
validate the model across more LRRs, soil texture classes, and clay contents, because model 
prediction error must use the same dataset as model validation and will penalize the use of few 
data points (see Section 3.5). If the available data fail to meet one of these minimums but 
exceeds the others in a way that supports a demonstrable test of generalized model 
performance, a case may be made for a valid exception to Requirement 2. This should be 
addressed explicitly in the Validation Report and will need to be approved by the Registry and 
by the external reviewer. 
 
Note that all model parameter sets used in crediting must be validated for each PC/CFG/ES 
combination (see Section 2). If model parameter sets vary by LRR this may require additional 
measurement datasets beyond the minimum described above to ensure all parameter sets are 
validated. 

3.3.1 Special Rules for Practice Categories 
For studies used in validating model performance and uncertainty in the Cropping practice 
category, any CFG occurring within the experimental period of measurements may be counted 
toward validation. For example, if two rotations were compared where one had a repeating corn-
soy rotation, and the other introduced a cover crop between corn and soy, the study could be 
used to validate all three of the CFGs associated with corn, soy, and the cover crop for the 
Cropping practice category, provided that experimental measurements spanned at least one full 
rotation. 
 
If grazing practices have been validated on pasture, and a CFG has been validated for either 
the Cropping or Soil Disturbance practice categories, the model can be considered validated for 
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grazing on residue for that CFG. For grazing practices, pasture can be defined as any perennial 
grass or legume. C3 and C4 grasses do not need to be validated separately for pasture grazing. 
 
For rice cropping systems, inorganic sulfur fertilizer application can be considered an extra 
practice category eligible for crediting due to its effects in reducing methane emissions. 
Validation of the inorganic sulfur fertilizer application practice category would be analogous to 
the inorganic nitrogen fertilizer application practice category, and would encompass the same 
domain of practice effects to be used in validation (i.e., magnitude, form, timing, or method for 
nitrogen fertilizer applied, with form encompassing inorganic S fertilizers, and method 
encompassing surface, subsurface, or irrigation-based application).  
 
For studies focused on grass blends that include a mixture of C3 and C4, or N-fixing and non-N-
fixing, all CFGs represented in the blend may be considered represented in that study.  
 
When validating a model for the Organic Amendments Application practice category, data from 
all CFGs classified as “annual” may be pooled together for validation, and the validation result 
may be considered applicable for crediting of organic amendment practices for all included 
annual CFGs. Each perennial CFG must still be validated separately. 
 
When validating a model for the Inorganic N Fertilizer Application practice category, it is 
expected that validation data may be scarce for CFGs that fix N (e.g. soybean), because these 
crops are often grown without N fertilization. Therefore the model may be considered validated 
for annual, herbaceous, C3, N-fixing crops if (1) inorganic N fertilizer application has been 
successfully validated for another annual CFG, and (2) the annual, herbaceous, C3, N-fixing 
CFG has been successfully validated for the Cropping, Planting, and Harvesting PC. 
 
Cropping systems using irrigation as a normal part of management separate from practices 
intended to reduce emissions, i.e. where irrigation is present in both project and baseline, are 
not required to have the Water Management/Irrigation PC validated, provided that irrigation is 
represented in at least one study in the validation dataset. 
 



Model Requirements and Guidance for SEP Projects  Version 1.1a, April 2022 

16 
 

Summary of Section 3.3 
 
Required for the Validation Report  

 Full description of data requirements to initialize and run the model version and parameter sets 
accurately, as well as the process for addressing missing information  

 A full accounting of the studies comprising the validation dataset for each CFG/PC/ES combo, 
for each emissions source. Study attributes should include: 

o Citation 
o LRR and IPCC climate zone  
o PC and CFGs being studied 
o Soil texture(s) and clay contents being studied  
o Experimental time period 
o Depths of SOC measurements 
o Measurement technique, e.g., dry combustion for SOC, or chambers for N2O 
o Methods of temporal aggregation used for observations of N2O and CH4  
o Portions of the calendar year covered by all N2O and/or CH4 measurements, with 

justification provided when portions are missing. 
o Number of observations used in validation 
o Measurement uncertainty associated with replicates, where reported 
o Experimental location (only when split between calibration and validation) 

 
Required Upon Request of the Verification Team 

 Additional details for validation studies including, but not limited to: 
o Experimental location and corresponding LRR and IPCC climate zone 
o Specific crops and practices being studied 
o Original units of measurements 
o Mathematical transformations performed on measurement data 

 
Study-specific use of data to initialize and run the model, as well as a record for the filling of missing 
information using process described in Validation Report 

 

3.4 Assessment of Bias for Each PC/CFG/ES Combination 
For each PC/CFG/ES being validated, the model must be shown to be unbiased in estimating 
the change in SOC, N2O, or CH4 pools for the project domain defined in Section 3.2, using 
measured data that meet the requirements of Section 3.3. This is done using the calculation of 
bias, a simplified version of average relative error (FAO, 2019), calculated between measured 
data and model predictions. Bias indicates the average tendency of the modeled estimates to 
be larger or smaller than their observed counterparts (Moriasi et al., 2007). Positive values 
indicate model overestimation bias, meaning that the model overestimates the practice effect. A 
negative value indicates model underestimates the practice effect.  
 
The calculation of bias is defined as: 
 
Equation 3.1 

𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 = (∑ 𝑷𝑷𝒃𝒃 −  𝑶𝑶𝒃𝒃
𝒏𝒏
𝒃𝒃=𝟏𝟏 )/𝒏𝒏  

Where,   
Pi = Predicted (modeled) change in SOC, N2O, or CH4 with the practice 
Oi = Observed change in SOC, N2O, or CH4 with the practice 
n = Number of observations for a given study 
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Model bias should be calculated for each study and a mean bias should be computed as the 
unweighted mean of all biases from individual studies. The mean bias should be less than or 
equal to an estimate of pooled measurement uncertainty (PMU). Pooled measurement 
uncertainty (PMU) is defined as the pooled standard error of all the measured values for a 
practice change, where standard error is derived from replicates of the measurements (Figure 
3.1.). Because not all studies will report measurement standard error, PMU may be computed 
using all studies used in a Validation Report using the same measurement technique. When 
PMU cannot be reasonably obtained, a default replacement value may be used for PMU that is 
based on typical measurement error for a given measurement technique, per approval of the 
Registry.  
 
Equation 3.2 

𝝈𝝈𝒎𝒎𝒎𝒎𝒃𝒃𝒃𝒃 = �
∑ 𝝈𝝈𝒋𝒋𝟐𝟐(𝒏𝒏𝒋𝒋 − 𝟏𝟏)𝒌𝒌
𝒋𝒋=𝟏𝟏

∑ (𝒏𝒏𝒋𝒋 − 𝟏𝟏𝒌𝒌
𝒋𝒋=𝟏𝟏 )

 

Where,   
k = Number of observations examined 
σj = Standard error of the jth observed change in SOC, N2O, or CH4 
nj = number of replicate measurements used in the jth observation 

 
Evaluation of bias may be done for studies comparing more than two treatments, for example 
three fertilizer rates, by pairing observations so that each of the three treatments is isolated as a 
”control” in turn. This will result in three sets of comparisons, once for each combination of 
treatments.  
 
A model is judged as valid if mean model bias is less than PMU, and model predictive 
uncertainty is determined as described in Section 3.5. However, per-study bias should be 
reported, ranked from highest to lowest. The intention of reporting per-study bias, as well as 
evaluating mean model bias compared to PMU, is to avoid penalizing any one study in terms of 
measured data or model performance (i.e., where there are few or variable measured data, or 
the model is biased in its prediction).  
 
However, it should be recognized that there may be circumstances where a model may be 
performing reasonably well even if mean bias is greater than PMU, for example due 
to limited availability of measured datasets or poor reporting of measured uncertainties. A 
project developer is allowed to petition for validating the model for use, if it can be clearly 
justified that the model is showing reasonable overall performance given available measured 
data. Such a petition will need to be approved by the Registry, following expert review. 
 
In this model evaluation framework, large model biases result in large residuals. Following 
guidance for model predictive error in section 3.5, this means large model bias in either direction 
(positive bias or negative bias) will result in large predictive uncertainty, and thus increase 
credit deductions. High model prediction error will therefore be yielded in two circumstances- 1) 
through low precision of an accurate model or 2) high precision of an inaccurate model. Figure 
3.1. and Figure 3.2 walk through an illustrative process to meet the requirements described 
above. 
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Figure 3.1. Visual Summary of One Possible Approach to Calculations for Determining Measurement 

Uncertainty of an Observed Practice Change Effect 
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Figure 3.2. Visual Summary of Calculations for Demonstrating that Model Bias is on a Similar Scale as 

Measurement Error 
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Summary of Section 3.4 
 
Required for the Validation Report  

 One complete example derivation of: 
o Calculation of model bias for a study, per Figure 3.1. 
o Calculation of PMU for a single measurement technique, per Figure 3.2. 

 All values of PMU used for each PC/CFG/ES combination validated. 
 All values of study bias for each study in a PC/CFG/ES’s validation dataset, ranked highest to 

lowest 
 Average bias across all studies in a PC/CFG/ES’s validation dataset. 

 
Required Upon Request of the Verification Team 

 Complete derivations and/or calculations made of PMU, study bias, and average model bias 
for each PC/CFG/ES combination. 

 

3.5 Using Data to Evaluate Model Prediction Error 
In order to validate the model for performance and uncertainty, the same datasets should be 
used to estimate the uncertainty of a model’s predictions, i.e., the model prediction error (SEP, 
Appendix D) and evaluate model fit. The calculation of model uncertainty bounds associated 
with a particular prediction (i.e., the prediction interval) should account for where there are few 
validation data (e.g., by using a weakly informative prior if using a Bayesian framework, Fig 
2.1.B) as well as account for data variability (i.e., with a wider posterior when data are more 
variable if using a Bayesian framework; Fig 2.2). These features enable the model to adequately 
estimate the confidence in its predictions, as described next. 
 
The SEP allows model prediction errors [to be computed by either of two methods]6: 

• [Analytical error propagation (SEP Appendix D.1), which requires only the mean squared 
error of validation simulations; or]6 

• [Monte Carlo simulation (SEP Appendix D.2), which requires declaration of the 
distributions of model parameters and/or inputs (including any hyperparameters for 
model structural uncertainty) obtained from validation simulations.]6 

The Validation Report may support [either or both approaches]6 by reporting the values needed 
to compute model prediction errors using the chosen Appendix. Thus if parameter distributions 
are not reported, then the model may not be considered validated for use with a Monte Carlo 
approach to uncertainty calculation. If using a Monte Carlo approach, simulations used to 
generate estimates of emissions reductions for an SEP project will need to use the same 
parameter values reported in the validation report, as well as include random draws from any 
hyperparameters. 
 
Whatever approach is used to compute model uncertainty bounds, the Validation Report must 
demonstrate that they have been set appropriately. Specifically, measured versus modeled 
results should be compared for each PC/CFG/ES combination for changes in SOC, N2O, and 
CH4 (if relevant), and demonstrate a minimum confidence coverage of 90% for 90% prediction 
intervals (i.e., the 90% prediction intervals should contain the measured value for at least 90% 
of the validation data). It should be recognized that there may be circumstances where model 

 
6 Text in brackets aligns with a revision to SEP Appendix D that is currently under consideration by CAR 
but not yet fully approved. If this revision undergoes further edits before finalization, the bracketed 
wording may require updating. 
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uncertainty bounds are appropriately set even if 90 % conference coverage is not achieved, for 
example due to limited availability of measured datasets. A project developer is allowed 
to petition for validating the model for use with such error bounds, if it can be clearly justified 
that the model prediction error is appropriately set given available measured data (for example, 
error bounds that cover 6 out of 7 observations, or 7 out of 8 observations where missing one 
drops the confidence coverage below 90%). Such a petition will need to be approved by the 
Registry, following expert review. 
 
Validation data come from experiments that range in duration from a few years to many 
decades, and model prediction error at each point is derived from simulations that match the 
durations of those experiments. This means that the prediction intervals needed for the 90% 
confidence coverage check will necessarily represent the accumulated model error over varying 
time intervals. By contrast, the quantity of interest when estimating model prediction error for 
SEP reporting is always the model error from a single reporting period (generally on the order of 
one year) and therefore likely to be smaller than the raw mean squared validation error.  
 
For reporting periods shorter than the median length of experiments in the validation dataset, a 
single mixed-duration estimate of model error is a conservative estimate of model prediction 
error and is acceptable to use as such for SEP reporting. For example, if a model is validated 
against a dataset containing experiments with lengths of (2, 2, 3, 5, 9, 48) years, the error from 
this validation may be applied to any simulation of length 4 years or shorter.  
 
It is also acceptable to include an explicit timescale component in the model’s uncertainty 
calculations, such that the time since measurement is taken into account and shorter intervals 
are assigned commensurately less timecourse uncertainty. Exact methods of performing such a 
correction are not yet specified here, and any such correction must be fully described in the 
Report and approved by the Registry, following expert review.      
 
In the model Validation Report, the following should be also included for each PC/CFG/ES 
combination and for changes in SOC, N2O, and CH4: 
 
 Scatterplot of the model predictions versus measurements 
 Histogram of residuals (the differences between predictions and measurements) 
 Mean squared error 
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Figure 3.3. Illustrative Example of One Possible Approach to Computing Model Prediction Error and 

Demonstrating that Model Predictions are Consistent with Validation Data 
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Summary of Section 3.5 
 
Required for the Validation Report 

 For each PC/CFG combination and emissions source: 
o Graphs of measured versus modeled results demonstrating that the 90% prediction 

intervals contain the measured value at least 90% of the time, per Figure 3.3. 
o Scatterplot of the model predictions versus measurements 
o Histograms of residuals (the differences between predictions and measurements) 
o Mean squared error 

 Documentation of final parameter sets and model prediction error for each emissions source 
o If using SEP Appendix D or D.1]: Document the model prediction error for emissions 

reductions as estimated using mean squared error 
o If using SEP Appendix D.2]7: Document the distributions of model parameters and 

hyperparameters 
 

3.6 Reporting on Model Validation 
A model Validation Report following the above requirements and guidance should be submitted 
to the Reserve either by the expert team member or a third-party expert employed by the project 
during a given reporting period. To be accepted by the Reserve, the Report will need to have 
received review and approval by an independent expert entity as having followed guidance in 
this document. The independent expert entity will need to be approved by the Reserve, 
following an assessment of conflict of interest between the reviewing entity and the project 
developer. Model validation requirements must be satisfied and confirmed prior to the 
completion of verification activities. This validation report will need to be revised, re-reviewed, 
and re-submitted at any point changes are made to the model.  
 
There are 3 options for model Validation Reports: 
 

1. Project-specific, that includes demonstration of model validation for a specific project’s 
domain and combinations of crop functional groups, practices categories, and emissions 
sources; 

2. Generalized to demonstrate overall performance of a given model, i.e., demonstrating 
where model performance is valid over a range of possible project domains and crop 
functional group/practices category combinations; or 

3. Project-specific and referencing an existing model Validation Report (type 1 or 2).  
 
The above guidelines are written for type 1 model Validation Reports. A type 2 Report would 
follow the same guidelines, but clearly identify all project domains and crop functional 
group/practice category/emissions source combinations where a given model version and 
parameter set/s have been calibrated and validated for model performance and uncertainty. A 
type 3 Report would follow the same guidelines, but clearly demonstrate that the referenced 
model validation report (type 1 or 2) meets model validation requirements for the specific 
project, including proof that the same model version and parameter sets are used, and that all 
project domain and crop functional group/practices category combinations have met minimum 
requirements for model validation. All types of model Validation Reports must either be 
independently assessed by an approved third-party entity or accepted for publication in one of 
the peer-reviewed publications listed in Section 3.6. 
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For each subsequent monitoring report, as long as a project area remains constant, or is only 
expanded to include new fields that already fit within the validated project domain, the existing 
Validation Report can be used. If the project is expanded to new practice effects, new crop 
functional groups, or the model is changed (using new model calibrations, changed 
parameters/parameter sets, or a different model, following guidance described in Section 6.5 of 
the SEP protocol), the Validation Report needs to be revised, reviewed by an approved third-
party entity, and re-submitted. All model Validation Reports will be public documents. 
 
It is also acceptable that the Validation Report is submitted as a peer-reviewed journal article, 
provided that the journal is on the pre-approved list provided below and the publication is 
approved for use by the Registry. It is acceptable that the journal article has not yet been printed 
as long as it has passed peer review and has been accepted for publication with revisions that 
do not change any aspects of model validation following the guidance in this document. In this 
circumstance, the project should submit the peer reviewed publication and responses to all 
revisions that clearly demonstrate revisions do not impact model validation. Where the peer-
reviewed publication option in pursued, it is additionally acceptable that model validation is 
completed using a different method than explicitly evaluating bias and goodness of fit as 
described above. The publication must demonstrate that separate datasets were used for model 
calibration and model validation (unless qualifying for a special exception; see Section 3.1). The 
model validation must demonstrate the model was found acceptable for use by the peer 
reviewers for a given biophysical domain and a given set of practices. Additionally, the 
biophysical domain and practices used in the publication must be shown to completely meet the 
same domain requirements laid out in Sections 3.2 and 3.3, as well as cover the practice 
categories and crop functional groups identified in Section 3.1. The same datasets used in the 
peer-reviewed model validation should be used to calculate model prediction error used in the 
project and evaluate model uncertainty. The same model version and model parameter 
values/parameter set values must be used in the peer-reviewed publication as are used in the 
project. Lastly, as a means of enhancing transparency with the peer reviewers, the authors must 
clearly state the purpose of the paper as being to validate the model for use in generating 
verifiable carbon credits. 
 
Pre-approved Journals: 
 
 Agricultural and Forest Meteorology  
 Agricultural Systems  
 Agriculture, Ecosystems and Environment  
 Agronomy Journal 
 Atmospheric Environment  
 Biogeochemistry  
 Biogeosciences  
 Ecological Applications 
 Ecological Modeling  
 Ecosystems  
 Environmental Modelling and Software  
 Environmental Pollution 
 Field Crops Research 
 Frontiers in Ecology and the Environment  
 Geoderma 
 Global Biogeochemical Cycles  
 Global Change Biology  
 Journal of Environmental Quality  
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 Journal of Geophysical Research - Biogeosciences  
 Nutrient Cycling in Agroecosystems  
 Plant & Soil 
 PLoS ONE  
 Science of the Total Environment  
 Soil & Tillage Research  
 Soil Biology & Biochemistry  
 Soil Science Society of America Journal 
 Soil Use & Management 
 Vadose Zone Journal 

4 Substitution for Missing Crops 
If during the calibration and validation process no sufficient data are available for a specific crop 
grown in the project, an alternative crop from the same (validated) CFG may be used as a 
substitution in both the baseline and with-project simulations. If an entire CFG is not validated, 
substitutions may be made that entail specific replacements be made for the baseline and with-
project simulations. This method depends on the availability of alternative, conservative CFGs 
for a given practice category that meet all of the above criteria; without any alternatives no 
substitution can be made.  
 
 Baseline:  

o Replace the missing CFG with an unfertilized perennial grass 
 Project:  

o Replace the missing CFG with an alternative CFG that is demonstrably more 
conservative in generating credits than the missing CFG. Conservatism may be 
demonstrated with literature showing that crops in the replacement CFG 
sequester less carbon on average, and/or emit more trace gas emissions on 
average, than crops in the missing CFG. 

5 Verification of Model Usage 
Each verification team must include a person or persons who are expert in the particular 
biogeochemical model used to quantify emission reductions in that reporting period (if any). 
Guidance is provided in Sections 2-4 for requirements that models must meet to be eligible. 
Verifiers will be required to confirm the requirements of Sections 2-4 of this document are met.  
 
Expert guidance is needed to ensure the given biogeochemical model is appropriately calibrated 
and validated for model performance and uncertainty for each reporting period. If the project 
employs the use of a third-party expert to undertake calibration, validation, and/or running a 
biogeochemical model in a given reporting period, then there will be no need for the verification 
team to independently verify such activities have been done appropriately, provided the 
verification team: confirms that the use of such third-party has been approved by the Reserve, 
that the party in question has the requisite expertise, that all requisite steps as set out in Section 
2 of this document have been followed, and provided the expert provides the verification team 
with a sensitivity analysis regarding the requisite data inputs for the given model.  
 
In other words, the verifier is simply required to confirm approval from the Reserve, confirm the 
qualification of the third-party, and confirm the requisite validation steps have been followed, but 
the verifier does not independently need to run the model themselves to confirm results appear 
reasonable. The verification team will still be required to confirm the reasonableness of all data 
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input into the given biogeochemical model, following the requirements for baseline modeling in 
Section 3.4.1.1 of the SEP, and following expert guidance on the sensitivity of the given model 
to the requisite data inputs.  
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