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1 Report type

1.1 Report type

Type 1 (Project-specific, for project CAR1459)

1.2 SEP version

Version 1.0, accessed on 23 April 2022

1.3 SEP model requirements version

Requirements and Guidance for Model Calibration, Validation, Uncertainty, and Verification For Soil
Enrichment Projects, Version 1.1a, accessed on 22 Mar 2022 (referred to hereafter as the “Model
Requirements”)

1.4 Model version

DayCent-CR Version 1.0.2.

This model version consists of the following components (collectively the “model files”). Each of these
components are version-controlled independently from each other, but only the following component
versions shall be considered the validated DayCent-CR Version 1.0.2:

1. Version 1.0 build 1.0 of the DayCent-CR model executable, corresponding to SVN revision 279 of
the DayCent source code repository1. This code was originally derived from the branch of DayCent
maintained by the National Greenhouse Gas Inventory team and also used for the COMET-Farm
system.

2. Version 2.0 of the DayCent-CR model parameters, corresponding to Git commit
85afb5ae2d17802007bf79e264d4100a326aec0b of the private model parameter repository.
These were originally derived from the default parameterizations for the COMET-Farm system and
have been modified for carbon crediting, including during the calibration process reported here. In
addition to parameter files, this component also includes R scripts that are used to perform Monte
Carlo simulations using the calibrated parameter set.

During model simulations for project CAR1459, Indigo will submit inputs to the model using the
DayCent-CR API, with initial version DCR1.0.2 build 1.0.0.23. This API was not used during calibration

1To access materials for academic research purposes, Indigo Ag should be contacted directly.
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or validation and is not included in the model version described here. The validation described here should
be applicable to any result obtained from DayCent-CR Version 1.0.2 whether it is run directly or accessed
through any technically compatible version of the DayCent-CR API.

1.5 Version confirmation materials

The following materials2 have been provided for use by the reviewer of this report and project verifiers for
CAR1459:

• Copies of validation datasets and model run files used in the simulations for this report (in their
initial state prior to model calibration), as well as code for running calibration and analyzing results
(DayCentCR_1.0.2_validation_supporting_files.zip)

• Appendix A “Documentation of calibrated parameter sets”

• Appendix B “Declaration of Practices”

• Appendix C “Sampler diagnostics”

• Appendix D “Thinned vs full posteriors of final fit”

• Appendix E “Confidence interval width and coverage rates as function of time”

• Appendix F “Variance inflation factor for ORG x All category”

• Appendix G “Proposal for disambiguating pooled measurement uncertainty (PMU)”

• Supporting document Appendix_D_revision_v4.docx

All version confirmation materials are version-tracked in their own repository separate from the model
API, which may have independent version updates that do not change the validated model files.

1.6 Changes from previous validation report

DayCent-CR version 1.0 has been previously validated and approved for crediting of SOC in Indigo U.S.
Project no. 1. For the current validation of DayCent-CR Version 1.0.2, we have made the following changes
from version 1.0:

1. The pooled measurement uncertainty (PMU) calculations use Eq. (7) in Appendix G. This change
was necessary to address an ambiguity that arose in the second validation report but not in the first
validation report. Please see Appendix G for details.

2To access materials for academic research purposes, Indigo Ag should be contacted directly.

7



2. The variance structure fitted during calibration now accounts for the way simulation errors build on
each other with time, by allowing the residual variance to scale exponentially with the length of the
simulation and thus to attribute more uncertainty to a result that depends on many decades of model
time and less uncertainty to a result that has had little time to diverge from the precisely-known
initial measurement. For the relatively short simulations used during crediting, this usually results in
reduced uncertainty compared to the approach used in the previous report but is still demonstrably
conservative (more than 90% of the 90% predictive intervals cover the observed value). See Section
4.1 for further details. In addition, we apply a variance inflation factor to the ORG x All category
to ensure conservativness (see Appendix F) and address potential concerns raised in Appendix E.

3. 8 new sites have been added to the validation dataset, further expanding the domain of geographies,
crop types, and practices covered by this validation. In particular, the new data include enough
observations to validate three PCs for SOC changes in the newly-added cotton CFG. See Section 5
for details.

4. Three of the validation sites that are new in this report were excluded from the previous report because
of insufficient SOC sampling depth, but we have now recovered estimates for these by identifying
additional data from other publications. See Section 4.4 for details.

5. Six appendices detailing changes from the Model Requirements (Appendices A–D and H of the
previous report) have been removed, because they are no longer needed when using version 1.1a of
the Model Requirements.

6. We have removed the restriction of valid model predictions to SOC changes smaller than 5000 g C
m-2 that was reported in the previous report, as uncertainty coverage in the current validation was
adequate across the full range of observed dSOC. We continue to note that 5000 g C m-2 is a larger
change than we expect to observe within the crediting period of any individual field. See Section 13
for details.

2 Introduction

This report describes the validation of DayCent-CR for use in modeling changes in the emissions source
soil carbon for carbon crediting as part of CAR1459, Indigo U.S. Project No. 1.

DayCent-CR is a process-based ecosystem biogeochemical model which simulates carbon and nitrogen
dynamics in cropland and grassland systems and has been tailored for compliance with the requirements
of the Climate Action Reserve Soil Enrichment Protocol. The DayCent model (e.g. see Parton et al.,
2001; Del Grosso et al., 2006; Del Grosso et al., 2012; Zhang, Suyker, and Paustian, 2018) has been used
extensively for more than two decades by researchers worldwide to simulate soil organic matter dynamics
and soil trace gas (N2O, CH4) fluxes in a variety of managed ecosystems (cropland, grassland, savanna,
forest). The model employs a daily time step and simulates plant processes (e.g., photosynthesis, phenology,
dry matter allocation, senescence), soil water balance, soil temperature, soil organic matter dynamics for
two plant litter and three soil organic matter pools, as well as mineral N transformations including N2,
N2O and NOx emissions and CH4 oxidation and emissions from soil. The model is used to estimate net
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CO2, N2O, and CH4 emissions from soils in the US national greenhouse house gas inventory submitted by
US EPA to the UN Framework Convention on Climate Change. The DayCent model is included within the
COMET-Farm platform that implements USDA’s entity-scale greenhouse gas inventory methods (Powers
et al., 2014) and the model is implemented as part of the Climate Action Reserve’s protocol for avoided
conversion of grassland (http://www.climateactionreserve.org/how/protocols/grassland/)

The version of the model validated in this report for the CAR Soil Enrichment Protocol project CAR1459
is based on the latest version of the model developed to simulate soil organic matter dynamics to 30 cm soil
depth, with additional improvements to several soil and plant processes as documented in Gurung et al.
(2020). This version, known as DayCent-CR, is structurally the same as documented in Gurung et al.
(2020), with one exception: the procedure used to initialize total soil organic C and N and its distribution
across the kinetically-distinct organic matter pools in this version of the model has been adapted to use
initial estimates of soil organic carbon based on lab measurements of field sampled soils (see Section 4.2
“Model setup” for details) and soil organic N pools based on the modeled C:N ratios of each SOC pool.
This allows the model to operate in compliance with SEP Protocol section 5, using the required direct
measurements of soil organic carbon (SOC) to initiate with-project and baseline simulations. In addition,
the parameterization and validation of the model, using Bayesian techniques described herein, has been
tailored specifically to the cropping domains defined in this Validation Report.

The DayCent-CR version evaluated in this report uses the DayCent executable compiled from source code
with Revision Number 279 in the Subversion system (TortoiseSVN software), used to manage versions of
source code and default parameter sets for the simulation. This executable is the same as the one used in
Gurung et al. (2020) except for a small change to the file reading system; otherwise it produces exactly
the same outputs.

3 Responsible parties

Calibration, validation, and running of DayCent-CR for this project were all performed by Indigo Ag,
which is also the project developer of CAR1459. As required in Section 5 of the SEP Model Requirements,
Indigo Ag has the requisite expertise to calibrate and validate DayCent-CR for model performance and
uncertainty, including the entire team formerly at Soil Metrics, LLC who were approved by CAR for the
validation of DayCent-CR version 1.0 on February 12, 2021 (https://soilmetrics.eco/our-team/).

C. Black lead the model validation process, oversaw alignment of available datasets with the SEP Model
Requirements, performed data analysis of validation datasets and model outputs, and lead the writing of
this report. B. Segal lead implementation of improvements to the model calibration process, performed data
analysis of model outputs for calibration and validation, and contributed to the writing and review of this
report. Y. Zhang performed modification to the model version to use direct soil measurements to initialize
the model, implemented the initial version of Bayesian calibration and cross-validation, and reviewed
modifications to the calibration process for the current model version. S. Williams performed literature
searches and assembled the validation dataset. M. Easter created the input files required to run the model
for each specific site. K. Brown and M. Easter developed APIs for high-throughput processing of model
inputs and outputs. K. Paustian supervised the project and provided review of all model development and
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data collection. R. Gurung developed the Bayesian calibration approach and provided technical guidance
on its implementation for this report. M. Motew helped with interpretation of the SEP Model Requirements
criteria and provided review of the report. M. DuBuisson and M. Walker oversaw compliance with SEP
requirements and provided review of all Validation Report materials. K. McAllister was the project manager
and led the development of timelines, the execution of deliverables, and alignment with stakeholders and
company priorities. N. Campbell was the project supervisor and provided review to all Validation Report
materials.

4 Model Calibration

Follows Model Requirements Section 2 Summary of Requirements (p8)

4.1 Description of model calibration

DayCent-CR Version 1.0.2 was calibrated using an approach that is similar to empirical Bayes in some
respects; our approach is not fully Bayesian due to the way the variance parameters are estimated (see below
for details). The joint posterior of DayCent parameters was estimated using the DiffeRential Evolution
Adaptive Metropolis (DREAM) algorithm (Vrugt and Ter Braak, 2011; Vrugt, 2016), which is a Markov
Chain Monte Carlo (MCMC) algorithm. The DREAM algorithm has been used by Zhang, Arabi, and
Paustian (2020) to calibrate DayCent for crop growth/production. To calibrate DayCent-CR for modeling
SOC stock and stock change, we used the likelihood function proposed by Gurung et al. (2020) with
the exception that we allow for heterogeneous residual variance whereas Gurung et al. (2020) assumed
homogeneous residual variance. This function accounts for location and year effects and estimates model
error for predictions at new sites, and is therefore suitable for the type of dataset used in this report i.e.
data compiled from multiple experimental sites with repeated measurements that are correlated both in
space and time.

In brief, the likelihood function assumes that the error follows a zero mean multivariate Gaussian
distribution per Eq. (1):

p(yobs|θ) = (2π)−n/2|Σ|−1/2 exp

{
−1

2
(ŷmod − yobs)

⊺Σ−1(ŷmod − yobs)

}
(1)

where θ is a vector of parameters that are used by DayCent to predict SOC or that define the
variance-covariance matrix Σ, ŷmod and yobs are vectors of natural log-transformed SOC values (modeled
and observed, respectively), and n is the number of observations. Both ŷmod and Σ are functions of the
parameters θ.

The variance-covariance matrix partitions model error into three components: variance between
experimental sites σ2

site, variance between years within sites σ2
site-year, and unexplained residual variance

σ2
resid = σ2 exp(2tν) where t is the number of years since the first measurement (the time at which SOC is

reinitialized in DayCent). σ2
site, σ

2
site-year, σ

2, and ν are included in θ. These parameters were estimated by
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fitting the model residuals from each MCMC iteration using a linear random effect model with two levels
of random effects (random intercept for site and random intercept for year nested within site) (Pinheiro
and Bates, 2000) and an exponential residual variance model that is a function of years since the first
measurement. See the supplement to Gurung et al. (2020) for additional discussion of this approach.
These models were fit with the R package nlme (Pinheiro et al., 2022) using the lme function as part of
the likelihood evaluation for each MCMC iteration. Thus these variance parameters were estimated via
restricted maximum likelihood (REML) applied to the marginal model after plugging in the Monte Carlo
draws for the DayCent calibration parameters. This estimation procedure is similar to empirical Bayes (see
Casella (1985) and Carlin and Louis (2009, Ch. 5)). However, in empirical Bayes, prediction and inference
would be based on a single set of variance parameter estimates, whereas we base prediction and inference
on a distribution of variance parameter estimates. As a result, we expect our approach to capture more
variability in the variance parameters than a traditional empirical Bayes analysis, but still less variability
than a fully Bayesian analysis.

The exponential residual variance model was chosen because it was straightforward to interpret and
implement (it is one of the standard variance structures supported by the nlme package (Pinheiro et al.,
2022)) and it performed well in practice (see Section 9 “Bias evaluation” and Section 10 “Model prediction
error”). Note that at time 0 (t = 0), the residual variance becomes σ2

resid = σ2 exp(2tν) = σ2 exp(0) = σ2.
In other words, σ2 is the residual variance at time zero. As shown in Appendix A, both σ2 and ν were
estimated to be positive, so the residual variance never goes to zero, and increases as the time since SOC
reinitialization increases. While exponential variance does not asymptote at long timescales in the way
expected for true SOC dynamics, the increase in residual variance for the fitted model is modest over the
time period in which the model will be deployed (per the SEP, fields can generate credits for a maximum of
30 years). Please see Appendix E for diagnostics related to the impact of the exponential residual variance
model on confidence interval width and coverage rates.

The calibration of DayCent-CR was implemented in R (R Core Team, 2021) using the DREAM package
(Guillaume and Andrews, 2012). The DREAM algorithm is described in detail by Vrugt et al. (2009). The
calibration was run with 11 MCMC chains, all of which were run until the R̂ statistic of Gelman and Rubin
(1992) dropped below 1.1 (900-2700 iterations depending on fold), suggesting convergence of the posterior
distribution of model parameters. The first 50% of each chain was discarded as the “burn-in” period and
the remaining 50% of each chain was used to summarize the posterior of the parameters θ3. Traceplots
and Gelman-Rubin R̂ statistics (i.e. parameter shrinkage factors) are provided in Appendix C.

Calibration and validation of the model were conducted simultaneously using a k-fold cross-validation
procedure with k = 5. This is a statistical approach that ensures independence between calibration and
validation datasets, as described on page 4 of the Model Requirements, and highlighted in the definition
section for the term “Validation”. In brief, the approach employed for this report consists of six major
steps:

1. Study sites were first randomly divided into five non-overlapping disjoint groups. If a given experiment
was assigned to a fold, all the individual observations associated with that experiment were then
assigned to that fold (see Section 4.4 “Justification for splitting of experimental data” for details).

3The post-burn-in simulations were thinned further to reduce computational burden during crediting, as described in the
k-fold fold validation steps.

11



The fold configuration used in this report is provided in Table A2 and a map of study sites in Figure
1.

2. Second, for each fold (fold = 1, 2, . . . , 5) one group was reserved for validation and the remaining four
groups were used for model calibration, giving approximately an 80%-20% split between calibration
and validation datasets, respectively.

3. Third, for each fold, Bayesian calibration was performed with DREAM as described above, resulting
in a joint posterior distribution of model parameters estimated from the calibration data for that fold.
As noted above, the first 50% of each chain was discarded as the “burn-in” period. This resulted in
450–1350 post-burn-in iterations (depending on fold) for each of 11 chains, for a total of 4,950–14,850
posterior draws.

4. Fourth, out-of-sample predictions were made in each fold using the validation dataset and parameters
from the joint posterior distribution that was calculated in step three from sites used for calibration.
Out-of-sample predictions were then used to estimate the posterior predictive distribution of SOC
differences between the experimental treatments at the second time point, similar to the methods
described in Gurung et al. (2020).

5. Fifth, model performance was quantified by computing model bias, RMSE, and 90% prediction
interval coverage of the validation data, evaluating each metric separately for each fold and then
calculating their means across all folds.

6. For the sixth and final step, the model was re-calibrated using the full dataset, and the resulting
calibrated parameters retained to serve carbon credit predictions by saving 176 joint posterior draws
evenly spaced over the post-burn-in period4. Whereas we need accurate estimates of tail probabilities
to assess validation criteria (i.e. coverage rates of 90% intervals), for crediting we only need accurate
estimates of variance, so require fewer posterior draws; because draws are by definition less likely to
fall in the tails than near the center of the distribution, it takes more draws to obtain stable estimates
of the 5th and 95th percentiles than to obtain stable estimates of variance (see Davison and Hinkley
(1997, Ch. 2.5.2) for related discussion in the context of bootstrap resampling). Furthermore,
crediting is done at a large scale and DayCent simulations can be time-consuming, so computational
efficiency is a key consideration. See Section 11 “Model validation outputs for use in SEP uncertainty
calculations” for a description of how the saved posteriors are used during crediting, and Appendix
D “Thinned vs full posteriors of final fit” for a comparison between thinned and full posteriors.

The prior distributions of parameters adjusted during the calibration process (Table A1) and summary
statistics of marginal posterior distributions of model parameters (Table A3) for the final step using the
full dataset are provided. For the full parameter set and auxiliary files needed to reproduce the validation,
please see the supplement DayCentCR_1.0.2_validation_supporting_files.zip.

Choosing the final parameter set by recalibrating to the full dataset, as described in step 6 of the calibration
procedure above, is common practice in fields making frequent use of statistical methods for cross-validation
(Kuhn and Johnson, 2013; Roberts et al., 2017) because it provides a final parameterization that is
maximally informed by all of the available training data. This approach complies with Section 2.3.1.2

4From each of the 11 chains, we kept nthin evenly spaced iterations from the post-burn-in period, where 11× nthin = 176.
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of the Model Requirements (“the method of choosing the final parameter set must be a prespecified part
of the cross-validation method”, and “the parameter values identified as the final validated set. . .must
be the ones used [for crediting]”), and we claim that cross-validation gives a reasonable estimate of the
performance that can be expected from the final parameter set (a model fit to the full training set typically
performs as well or better on new data than was observed on hold-outs from the training set during
cross-validation (Roberts et al., 2017)). However, steps four and five of our cross-validation procedure
inherently perform validation on k separate parameter sets that will all differ slightly from the final joint
posterior distribution created in step six for use during crediting, so care is needed to demonstrate that the
final values and the cross-validation results are consistent with each other. To check this, we completed
a comparison between the parameter distributions obtained from cross-validation and from fitting the full
dataset (Figure A1), as well as between the distributions of model outputs (Figure 66 and Section 12) to
ensure differences between the validated and final parameterizations, particularly for the most sensitive
parameters, are not such as would materially change model results.

4.2 Model setup

For calibration and validation, we ran DayCent-CR for all treatments and sites (See site-level
summaries in tables of Section 8 “Documentation of validation and calibration datasets, per
CFG-PC-ES combination”, and full dataset in data file validation_data_datapoints.csv in
DayCentCR_1.0.2_validation_supporting_files.zip). The following describes the procedure used to
simulate the experimental sites for the calibration and validation approach described above.

The model-driving input files for each site were created following the procedures described in Section 6
“Description of data requirements”. Where site-specific data were not available from the experimental
publication, we used soil data (texture and pH, which were then used to estimate other missing soil
parameters) from the gSSURGO database (Soil Survey Staff, 2022), management information estimated
from typical agronomic practice in the region (see Section 6.2 “Management information” and Section 6.3
“Procedures for missing data” for details), and climate data (minimum and maximum daily temperature,
precipitation) from the PRISM database (http://prism.oregonstate.edu) for the experiments located
in the United States. The nearest weather station was used for sites in the United Kingdom (Barré et
al., 2010) and Canada (Environment and Climate Change Canada: https://climate.weather.gc.ca/

historical_data/search_historic_data_e.html. For sites in Brazil temperature and precipitation were
obtained from the SWAT global weather data (swat.tamu.edu/data/cfsr), and for Australia temperature
was obtained from SWAT and precipitation was obtained from the nearest weather station (Australian
Government; Bureau of Meteorology; http://www.bom.gov.au/climate/data/).

DayCent-CR divides SOC into three conceptual pools that differ only in their turnover time and do not
correspond to any physically measurable soil fractions. In order to estimate the proportions of the SOC
pools, we conducted equilibrium simulations of native grassland (5000 to 7000 years) to bring the SOC pools
to a steady state, followed by a simulation of historical agricultural management based on available data
from the site or the region it is in, consistent with methods and data used in the US National Greenhouse
Gas Inventory (U.S. EPA, 2020). These historical periods before the experiments began were simulated
using the default parameters in the DayCent-CR model. At the end of the historic period, the estimated
proportions of SOC pools are used to fractionate the measured SOC at the beginning of the experiment
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to active, slow, and passive SOC pools in the model. After initialization of the SOC pools to match the
measured value, simulations of the experimental period were used to perform the calibration and validation
process (see Section 4.1 “Description of model calibration”).

14 of the 41 experimental sites that generated observations used in this analysis did not report SOC
measurements at the beginning of the experiment. In these cases the entire history of the experiment was
simulated, but the simulations were divided into two eras:

1. The period between experiment start and first SOC measurement was simulated as part of the
historic period, then the simulation was stopped and model SOC was initialized to match the first
SOC measurement as described above.

2. The period between first SOC measurement and experiment end was then simulated beginning from
the reinitialized SOC values and the simulation result was used for calibration and validation.

This approach conforms to SEP requirements that model simulations of SOC change for carbon credits
must be initialized with in-field measurements of SOC. In other words, all reported experimental practices
are modeled, but the model is calibrated and validated using equilibrium simulations, site history, and
initial SOC measurements in the same way as this information would be used in an SEP project, and
calibration and validation are constrained to the time periods for which SOC observations are available.
We note that for some sites, initial SOC measurements were quite late relative to the full duration of
the experiment (e.g. the Otis site, which started in 1966 but SOC was not measured until 2005). While
this does leave portions of experimental history out of the calibration/validation exercise, initial SOC is a
highly influential model driver and we believe that the error introduced by attempting to estimate SOC
at experiment start time would be more detrimental to model performance than restricting validation of
these sites to the period that is well constrained by measurements.

The same initialization procedure will apply to the use of the model in carbon crediting for an SEP
project, using site latitude and longitude, soil C measurements, and soil physical and chemical properties
(described in Section 6 “Description of data requirements”). Comparable site-specific climate data (as
demonstrated by peer-reviewed evidence in the CAR1459 Monitoring Plan) will be provided for all project
simulations. Native grassland will be assumed for all the SEP projects for the initial period simulated to
reach a model steady-state (consistent with the US National GHG Inventory and current implementation
in COMET-Farm). The version of the model evaluated in this report requires the input of management
information to begin in the year 2000. This means the model spin-up period, as described in SEP Section
3.4.1.3, will extend from Jan 1, 2000 until the beginning of the required historic baseline period for a
given location being simulated. All management information for the model spin-up period, required
historic baseline period, and with-project periods must meet SEP requirements and will be described
in the CAR1459 Monitoring Plan.

4.3 Documentation of model parameter sets

DayCent-CR has hundreds of parameters and calibrating all of them simultaneously would be
computationally impractical. Many of these model parameters have been previously tested and applied
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extensively without change, for example annually in US GHG inventory simulations (U.S. EPA, 2020),
and not all model parameters have an impact on SOC dynamics. Therefore we selected 28 parameters to
consider in the calibration exercise (Table A1). These consisted of 27 parameters directly related to SOC
processes and to DayCent-CR’s soil organic matter decomposition sub-routine, plus one parameter related
to soil water (“FWLOSS(2)”, which scales potential evapotranspiration) that was chosen by scientist Yao
Zhang (a Responsible Party to this report) based on his previous work developing DayCent water modeling
processes. These parameters were selected because they control the decay rate of the SOC pools and C
transfer efficiency between pools and directly affect the magnitude of SOC stocks and SOC stock differences.
Other parameters associated with other processes, such as plant production, influence modeled SOC but
in an indirect manner mediated by the selected parameters. Consequently, they were left as constants and
assigned the default values used in COMET-Farm and the US GHG Inventory.

All 28 parameters were assigned independent uniform prior distributions defined by the lower and upper
bounds shown in Table A1. The initial list of parameters and their prior ranges were taken from the
values reported in Gurung et al. (2020) and are based on theoretical understanding, previous studies by
the team of scientists at Colorado State University where the model was developed, initial testing of model
algorithms, and direct review and input from William J. Parton who created the Century model and was
the primary investigator on many of the previous studies. This initial list was then updated by Y. Zhang
to include potentially influential water parameters and to align each parameter’s prior range with values
that are biogeochemically plausible for the conditions present in the project area.

A variance based Global Sensitivity Analysis (GSA) was performed on the calibration dataset used for the
validation of DayCent-CR version 1.0, using the method of Sobol (1993) to identify the model parameters
most strongly controlling SOC response. The GSA quantified the relative importance of the parameters
that have a substantial influence on model output, and allowed us to identify which group of parameters
was most important. The Sobol method implements a Monte Carlo simulation to propagate parameter
uncertainty from the priors to uncertainty in model outputs. Similar to analysis of variance, the method
partitions the total variance of the model output into first-order and higher-order interaction terms to
estimate the proportion of variance explained by each parameter. The method is model independent and
has been previously used with a closely related version of the DayCent model in Gurung et al. (2020).
The total sensitivity indices for each of the 28 parameters are plotted in Figure C17. From this analysis,
we identified 10 parameters that each contributed more than 0.5% of variance (see Table A1). This very
inclusive cutoff was chosen to reduce the dependence of the GSA on the calibration dataset.

Bayesian calibration was performed on the 10 most influential parameters shown in Table A1, and the rest
of the parameters were fixed to their default values. The calibration also included REML estimates of four
variance parameters (σ2

site, σ
2
site-year, σ

2, and ν) (Table A3), as described in Section 4.1.

The prior ranges for all DayCent parameters included in the Bayesian calibration, along with descriptions
of each parameter, are provided in Table A1. The summary statistics of the marginal posterior distribution
are provided in Table A3 and Figure A1. Sampler diagnostics, marginal posterior plots, and parameter
correlation plots are available in Appendix C. Only the parameters included in the GSA are shown in
Appendix A; for the full parameter set and auxiliary files needed to reproduce the validation, please see
supporting file DayCentCR_1.0.2_validation_supporting_files.zip.
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During the calibration process, instead of estimating the posterior distribution of model parameters for
each LRR separately, we treated the model parameters as population-level variables and conducted a single
calibration for all LRRs. Because we use the joint posterior from this single calibraiton in crediting runs,
the bias and uncertainty estimates presented here are generalizable to all crop types and management
practices represented within the dataset used in this validation report.

4.4 Justification for splitting of experimental data

Because only a limited number of experiments have measured enough parameters over a long enough time
span to parameterize soil carbon models confidently, it is desirable to use studies from sites with the
highest-quality measurements for both calibration and validation. To retain statistical independence of
calibration and validation data (Model Requirements, Section 2), the calibration and validation were
performed using a 5-fold cross-validation method following Section 2.3 of the Model Requirements.
Cross-validation retains statistical independence of calibration and validation data by ensuring that each
candidate model is never evaluated against the same data that trained it, but also retains efficiency by
ensuring that every data point contributes to both the calibration and validation processes. Because of
these properties, cross-validation is widely used for model evaluation in cases where the goal of calibration
is to minimize prediction bias when data are limited.

To retain independence while dividing the available dataset into five folds, we assigned experimental sites
into folds, taking into account the likelihood of high spatial and/or temporal correlation of repeated
measurements from the same site. For sites where all experiments share a physical location and management
history, all observations were assigned to the same fold. For sites with multiple experiments that are near
each other but differ in timing or duration of experiment, crop type, or primary experimental goal (i.e.
that differ at the level of CFG/PC combination, per Model Requirements, Section 2), the data from these
experiments may be correlated in space (climate and soil factors, conditions during model spinup) but
are likely uncorrelated in management. Therefore, these experiments were considered as separate “sites”
and were separately randomly allocated to folds. The intention of this approach was balancing the need
for independent folds against the need to ensure that each fold contained approximately one-fifth of the
data, as well as sufficient data from each crop and practice to be validated. To check for correlations
not addressed by this approach, we also created spatial variograms of log(initial SOC stock), measured
and modeled SOC change, and model residuals after calibration (see Figures C1–C4 in Appendix C.1).
While there apears to be spatial correlation in log(initial SOC stock), the range of spatial correlation was
estimated to be only 217 kilometers, and there does not appear to be spatial correlation in the modeled or
measured differences in SOC stock change or in residuals.

The data from 3 sites (brookings REAP, dalhart, tribune) were late additions to the dataset that were
excluded from calibration because of time constraints but were included in the validation by randomizing
each site into one fold of the dataset when making out-of-sample predictions.
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5 Project domain

Follows Model Requirements, Sections 3.1 and 3.2, and Summary of Section 3.2 (p10)

5.1 Practice categories

The project intends to credit 14 practices (Appendix B) falling into four Practice Categories (PCs):

• “Inorganic N fertilizer application” (NFERT)

• “Organic amendments application” (ORG)

• “Soil disturbance and/or residue management” (DISTURB)

• “Cropping practices” (CROP)

5.2 Crop functional groups

The project includes crops spanning four crop functional groups (CFGs):

• Annual, C4, herbaceous, non-N-fixing, non-flooded crops (“corn”)

• Annual, C3, herbaceous, non-N-fixing, non-flooded crops (“wheat”)

• Annual, C3, herbaceous, N-fixing, non-flooded crops (“soy”)5.

• Annual, C3, shrubby, non-N-fixing, non-flooded crops (“cotton”)

5.3 Land resource regions

The project encompasses 16 LRRs (Table 1) and 8 IPCC climate zones (Table 2).

5Note that crops with the genetic potential to grow perennially (e.g. alfalfa, vetch, clover) were included in this CFG when
they were only grown for a single season, qualifying them as annuals per Section 3.2.1 of the Model Requirements
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Table 1: Land Resource Regions (LRRs) occurring in the project area.

LRR Name

D Western Range and Irrigated
E Rocky Mountain Range and Forest
F Northern Great Plains Spring Wheat
G Western Great Plains Range and Irrigated
H Central Great Plains Winter Wheat and Range
I Southwest Plateaus and Plains Range and Cotton
J Southwestern Prairies Cotton and Forage
K Northern Lake States Forest and Forage
L Lake States Fruit, Truck Crop, and Dairy
M Central Feed Grains and Livestock
N East and Central Farming and Forest
O Mississippi Delta Cotton and Feed Grains
P South Atlantic and Gulf Slope Cash Crops, Forest, and Livestock
R Northeastern Forage and Forest
S Northern Atlantic Slope Diversified Farming
T Atlantic and Gulf Coast Lowland Forest and Crop

Table 2: Climate zones defined by IPCC (2019) appearing in the project

ipcc climate zone ipcc climate zone abbrev

warm temperate dry WTD
cool temperate dry CTD
warm temperate moist WTM
cool temperate moist CTM
boreal moist BM
boreal dry BD
tropical moist TrM
tropical dry TrD

5.4 Soils

The project includes all 12 soil textures in the USDA soil texture classification, listed in Table 3 along with
the clay contents at the midpoint of each texture class definition.
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Table 3: Names, abbreviations, and midpoint clay contents for USDA soil texture classes occurring in the
project area.

Abbreviation Texture class % clay

Cl Clay 70
ClLo Clay loam 35
Lo Loam 20
LoSa Loamy sand 10
Sa Sand 5
SaCl Sandy clay 40
SaClLo Sandy clay loam 30
SaLo Sandy loam 10
Si Silt 5
SiCl Silty clay 45
SiClLo Silty clay loam 35
SiLo Silt loam 15

5.5 Emission sources

The model was validated for changes in soil organic carbon. Emissions of CH4 and N2O are not included
in this report.

5.6 Domain covered by this validation

The domain validated in this report includes a total of 12 combinations of CFG, PC, and emissions source
(ES), as summarized in Table 4). Additionally, following Model Requirements section 3.3.1 paragraph 5
(allowing multiple project CFGs to be aggregated when validating the ORG PC), we present a combined
dataset for the ORG PC from all annual crops combined, with an additional variance inflation factor to
ensure conservatism (Appendix F). Data for ORG x corn x SOC and ORG x soy x SOC are provided
for context only, as we consider them validated by the combined ORG x All x SOC dataset. Further, we
follow Model Requirements section 3.3.1 paragraph 7 (allowing cropping systems that use irrigation as a
background practice to not require validation of the WATER PC). This provision is valid because at least
one study in the validation dataset uses irrigation as a management practice. The range of precipitation
regimes included in the validation dataset (173-1627 mm yr-1), covering at least 3 LRRs, are considered
an adequate proxy for testing the effects of artificial rainfall.

19



Table 4: Combinations of CFG and PC that are validated for SOC in this project

PC corn cotton soy wheat

CROP + + + +
DISTURB + + + +
NFERT + - + +
ORG Via ORG x All Via ORG x All Via ORG x All +

Table 5: Biophysical attribute ranges across which
each PC/CFG was validated for SOC, meeting minimum
requirements outlined in Model Requirements section 3.3,
Requirement 2. All PC/CFG categories pass the “stacking”
requirement (Model Requirements section 3.3, Requirement
1) by containing at least one study that isolates the
effect of the PC change being validated. See the data
declaration table for each PC x CFG combination in Section
8 “Documentation of validation and calibration datasets,
per CFG-PC-ES combination” for counts of stacked and
unstacked observations.

PC CFG n
sites

n
observations

LRRs climate
zones

countries soils clay
range

CROP corn 17 210 C, H,
L, M,
P, S

CTD,
CTM,
TrM,
WTD,
WTM

Brazil, USA Cl,
Lo,
SaLo,
SiCl,
SiClLo,
SiLo

40

CROP cotton 6 162 C, P TrM,
WTD,
WTM

Australia,
Brazil,
USA

Cl,
ClLo,
SaLo

54

CROP soy 20 295 C, H,
L, M,
P, S

CTD,
CTM,
TrM,
WTD,
WTM

Australia,
Brazil,
Canada,
USA

Cl,
ClLo,
Lo,
SaLo,
SiCl,
SiClLo,
SiLo

54
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CROP wheat 23 326 C, H,
L, M,
P, S

CTD,
CTM,
WTD,
WTM

Australia,
Canada,
USA

Cl,
ClLo,
Lo,
SaClLo,
SaLo,
SiCl,
SiClLo,
SiLo

54

DISTURB corn 13 225 K, L,
M, N,
P

CTD,
CTM,
TrM,
WTD,
WTM

Brazil, USA Cl,
Lo,
SaLo,
SiClLo,
SiLo

40

DISTURB cotton 4 49 C, P TrM,
WTD,
WTM

Australia,
Brazil,
USA

Cl,
ClLo,
SaLo

43

DISTURB soy 9 66 C, L,
M, N,
P

CTD,
CTM,
TrM,
WTD,
WTM

Brazil, USA Cl,
ClLo,
Lo,
SaLo,
SiClLo,
SiLo

40

DISTURB wheat 11 87 B, C,
F, G,
H, L,
M, P

CTD,
CTM,
WTD,
WTM

USA ClLo,
Lo,
SaLo,
SiClLo,
SiLo

30

NFERT corn 15 166 C, E,
H, K,
L, M,
N, P,
S

CTD,
CTM,
WTD,
WTM

USA ClLo,
Lo,
LoSa,
SaLo,
SiClLo,
SiLo

25

NFERT soy 7 77 C, L,
M, P,
S

CTM,
WTD,
WTM

USA Lo,
SaLo,
SiClLo,
SiLo

25

NFERT wheat 14 173 B, C,
F, H,
L, M,
P, S

CTD,
CTM,
WTD,
WTM

Canada,
England,
USA

Lo,
SaLo,
SiClLo,
SiLo

25
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ORG All 10 58 B, C,
E, L,
M, S

CTD,
CTM,
WTD,
WTM

Canada,
England,
USA

ClLo,
Lo,
LoSa,
SiClLo,
SiLo

29

ORG corn 6 15 C, E,
L, M,
S

CTD,
CTM,
WTD,
WTM

USA ClLo,
Lo,
LoSa,
SiClLo,
SiLo

25

ORG soy 3 7 C, M,
S

WTD,
WTM

USA Lo,
SiClLo,
SiLo

18

ORG wheat 8 53 B, C,
M, S

CTD,
CTM,
WTD,
WTM

Canada,
England,
USA

ClLo,
Lo,
SiClLo,
SiLo
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6 Description of data requirements

Follows Model Requirements, Section 3.3 Summary of Requirements (p14)

To run DayCent-CR, the following information must be provided:

6.1 Site-specific model drivers

• Daily weather data for the site and time period to be simulated: precipitation, maximum and
minimum temperature, and optionally solar radiation, relative humidity, and windspeed. When
the optional weather inputs are not provided, the model estimates them using an internal calculation
based on site latitude.

• Soil texture (sand, silt, clay), bulk density, pH, and hydraulic conductance for each soil horizon from
the surface to the first fully root-restrictive layer.

• Initial SOC stock in the 0–30 cm soil layer

• Depth to bedrock

• Site latitude
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6.2 Management information

• Site history from before the experiment, for running modeled SOC pools to equilibrium: Native
vegetation type, approximate historic management. When not available, site history is inferred from
local native vegetation types and regional historic agricultural records.

• Identities, including cultivar information when possible, of all crops in the rotation

• Planting dates and methods

• Tillage dates, types, and intensities: implements used, depth, number of passes

• Harvest dates, methods, and types (e.g. grain, hay %offtake, fruit, etc.)

• Residue management (e.g. burning, straw/stover removal)

• Nitrogen fertilization dates, types, amounts, and application methods

• Herbicide dates and types

• Irrigation dates, types, amounts

• Organic matter addition dates, types (e.g. manure, green manure, compost, straw amendments, N
fraction, C:N ratio, mass of the dry fraction)

6.3 Procedures for missing data

While most published experiments give sufficient detail on the experiment treatment management,
pre-experiment details are often lacking. Whatever pre-experiment detail is provided in study
documentation, or derived through communication with the experiment managers, is incorporated into
model inputs for the simulation period leading up to the experiment. Sometimes more details can be gleaned
from companion articles not emphasizing SOC. When no other detail is available for the pre-experiment
period information, the land use history most similar to the experiment itself is selected.

Where no specific information is available, as is often the case in simulation periods much before the
experiment, common regional practices can be derived from available sources on crops grown, tillage and
fertilizer inputs (NASS, ERS-ARMS, CTIC). Where more soils detail is needed than provided in the
material on hand, information is pulled from USDA Web Soil Survey for the soil series mentioned in the
publications.

7 Description of validation data collection process

Follows Model Requirements, Section 3.3 Requirement 1 (p12)
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All studies used for model validation were identified from a database of long-term SOC experiments that is
contributed to and maintained by DayCent model developers from multiple research teams. This database
tracks experiments found in peer-reviewed literature that report effects of management on soil organic
carbon. The database is used to develop a set of model inputs for parameterization and testing that have
been updated and used continually alongside such projects as the US National GHG Inventory (U.S. EPA,
2020), in which the DayCent model simulates US agriculture GHG emissions for reporting to the UNFCC.

These experiments are considered to have sufficient management detail and reliable soils information to
support model testing and development activities, i.e. all parameters listed above in Section 6 “Description
of data requirements” were reported, or could be inferred according to the procedures reported above
in Section 6.3 “Procedures for missing data”. The data compilation process focused on sites rather
than individual publications because in many cases, especially for the longest-running studies that are
of highest value for model validation, the SOC measurements and the information needed to parameterize
DayCent-CR for the study are reported in multiple separate publications from one site. Once a site
was selected for inclusion in the database, all relevant publications for that experiment were found by
searching for combinations of the name of the experiment or research station, key authors, and geographic
descriptions (e.g. name of nearest town or of the institution sponsoring the research site), and by following
citations in publications already identified for the site.

The database is believed to contain effectively all publicly reported long-term soil research sites where
the effect of agronomic practices on soil carbon have been experimentally evaluated for at least three
years, measured at two or more timepoints, and reported in sufficient detail to allow parameterization
of DayCent-CR models that match the experimental conditions. Much effort by the DayCent model
development team has gone into assembling all relevant publication and databases associated with each
experiment modeled. This includes all datasets that the development team is currently aware of, through
searching published literature, grey literature, and inquiries in research networks. Articles published any
time before the end of 2021 were considered for inclusion.

For this validation and calibration, data were evaluated from 152 sites reporting SOC changes in cropland.
Sites were excluded only when they failed one or more of the following criteria:

• Sufficient information was provided to model the site accurately, as described above in Section 6
“Description of data requirements” or missing data could be inferred according to procedures reported
above in Section 6.3 “Procedures for missing data”.

• SOC was measured to a depth of 30 cm, or to depths allowing a reasonable
approximation to 30 cm (not less than 23 cm) by interpolation across the depths that
were reported. See supplementary data sheet validation_data_datapoints.csv in
DayCentCR_1.0.2_validation_supporting_files.zip for details of the transformations applied
to each measurement. Most of the excluded sites were excluded at this stage because of too-shallow
SOC measurements.

• SOC was measured at least two times spanning a total interval of at least three years. If the first
SOC measurement was not taken at the onset of the experiment, only the data from timepoints after
the first SOC measurement were used.
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• When a study was conducted outside the United States, the IPCC climate zone of the site could be
determined and was included in the Project’s domain (Table 2).

After this evaluation process, 41 sites (Figure 1) were identified as usable for the calibration and validation
process, collectively containing 291 treatments and 668 measurements that could be combined into 1,018
pairs of observed practice-change effects. 1 of these observation pairs were from PC x CFG combinations
not validated in this report (1 H2O x wheat ), and these pairs were included in the calibration runs
(therefore allowing the final parameter set to be informed by these observations) but are not used for
model validation in this report.

Figure 1: Locations of experimental sites used for calibration and validation of DayCent-CR. Land Resource
Regions are shown in grey. Colors indicate which fold of the cross-validation held this site out for validation.
Sites outside of North America not shown: broadbalk (Rothamsted, England; fold 4); goias (Goias, Brazil;
fold 1); narrabri field6 (Narrabri, New South Wales; fold 4); narrabri fieldD1 (Narrabri, New South Wales;
fold 3); narrabri fieldC1 (Narrabri, New South Wales; fold 1) .

Where information from multiple publications was combined for a single validation point, all publications
used are included in the citation list for that site (Tables 6–20, Section 8). When a study reported the
effect of changing more than one practice at once with no ability to isolate the effects of each practice, the
stacked observations were held out until the category contained at least one other validation study which
reported the same effect in isolation. This was done to ensure that no category was validated solely against
stacked practice studies, per Section 3.3 Requirement 1 of the Model Requirements.
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Where studies reported the uncertainty of their observations, the reported uncertainty values were extracted
and used to compute pooled measurement uncertainty (PMU). The uncertainty of a given observation
was recorded only if the publication reported a variance, standard deviation, or standard error for that
treatment. Because the database was originally compiled for validation of individual treatments rather
than of the differences between them, uncertainties were not extracted that were reported for differences
between treatments rather than for the individuale treatments. In particular, this means that the PMUs
reported here contain no observations from papers whose uncertainties were reported solely in forms such
as least significant differences, HSD tests, or MSE values from ANOVA results.

8 Documentation of validation and calibration datasets, per
CFG-PC-ES combination

Follows Model Requirements Section 3.3 Summary of Requirements (p14)

Throughout this section, we use the abbreviations for IPCC climate zones shown in Table 2, for soil textural
classes shown in Table 3, and for Land Resource Regions shown in Table 1.
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8.1 CROP x corn x SOC

This category’s validation is usable in all project LRRs and soil textures because:

• The selected studies span 6 LRRs (C, H, L, M, P, S), 4 of which (H, L, M, S) are in the declared
project domain, as well as one site outside the US that is within the declared project climate zones
(WTM).

• 6 soil textures are included, all of which are in the declared project area: Cl, Lo, SaLo, SiCl, SiClLo,
SiLo.

• Clay content spans 40 percentage points, from 10% to 50%.

• At least one study isolates effects, i.e. only 18 of the 210 pairs of observations compare stacks of PC
changes.
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Figure 2: Histogram of changes in SOC observed by the studies used for model validation in response to
changed cropping practices involving crops from the corn-type CFG.

Table 6: Descriptive dataset attributes for studies used in
validation of CROP x corn.
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Study name Citation(s) Location Year
initiated

Year(s)
measured LRR

IPCC
climate
zone

Soil
texture

Clay
content
(%)

SOC
measurement
method(s)

N
observations

brookings REAP Wegner
et al. (2018)
and
Osborne
and Lehman
(2018)

Brookings,
SD

2008 2012 M CTD SiClLo 35 dry combustion 6

dalhart Halvorson
et al. (2009)

Dalhart, TX 1999 2006 H WTD SaLo 18 dry combustion 1

davis2 Clark et al.
(1998)

Davis, CA 1988 1996 C WTD Lo 17 Walkley-Black
method

5 (4 stack
PCs)

fort valley Sainju,
Whitehead,
and Singh
(2005)

Fort Valley,
GA

1999 2002 P
WTM

SaLo 10 dry combustion 54

goias Ferreira
et al. (2019)

Goias,
Brazil

2005 2014 TrM Cl 50 dry combustion 3 (1 stack
PCs)

hoytville Collins
et al. (1999)

Hoytville,
OH

1963 1993 L CTM SiClLo 40 dry combustion 3

imperial Denef et al.
(2008)

Imperial,
NE

1970 2012 H CTD Lo 24 dry combustion 3 (3 stack
PCs)

kbs Station
(2021)

Hickory
Corners
KBS, MI

1993 2001 L CTM Lo 19 dry combustion 1 (1 stack
PCs)

mead Elliott et al.
(1994)

Mead, NE 1975 1992 M WTD SiClLo 35 dry combustion 1

mead2 Varvel
(2006)

Mead, NE 1982 1992,
1998,
2002

M WTD SiClLo 31 dry combustion 54
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morrow Khan et al.
(2007)

Champaign-
Urbana, IL

1955 2005 M
WTM

SiLo 25 dichromate
oxidation
technique of
Mebius (1960)

4

otis Denef et al.
(2008)

Otis, CO 1966 2012 H CTD Lo 26 dry combustion 3 (3 stack
PCs)

rodale Elliott et al.
(1994) and
Pimentel
et al. (2005)

Kutztown,
PA

1981 1992,
2002

S
WTM

SiLo 30 not reported 6 (6 stack
PCs)

russellranch LTRAS
Kong et al.
(2005)

Winter, CA 1993 1997,
2003,
2012

C WTD SiLo 18 dry combustion 6

saginaw Christenson
(1997)

Saginaw, MI 1972 1981,
1991

L CTM SiCl 47 dry combustion 30

tribune Halvorson
and Schlegel
(2012)

Tribune, KS 2001 2010 H WTD SiLo 26 dry combustion 6

wooster Collins
et al. (1999)
and Dick,
Edwards,
and McCoy
(1997)

Wooster,
OH

1962 1971,
1980,
1992

M CTM SiLo 15 dry combustion,
Walkley-Black
method
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8.2 CROP x cotton x SOC

This category’s validation is usable in all project climate zones and soil textures because:

• The observations within the US span only 2 LRRs (C, P), only one of which (P) is in the declared
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project domain, but the studies also include sites outside the US that are within the declared project
climate zones (TrM). Collectively across US and international sites, the validation data are taken from
four distinct agricultural regions (LRR C, LRR P, Brazil, Australia) across three climate zones (TrM,
WTD, WTM), all of which are in the declared project domain. Following Model Requirements section
3.3, requirement 1 (“Datasets may be used from studies outside of the US. However, the associated
IPCC climate zone where these datasets were collected should correspond to the declared IPCC
climate zones of the project.”), we interpret three project climate zones as equivalent to three project
LRRs for purposes of meeting the bioclimatic distribution requirements using data from outside the
US.

• 3 soil textures are included, all of which are in the declared project area: Cl, ClLo, SaLo.

• Clay content spans 54 percentage points, from 10% to 64%.

• At least one study isolates effects, i.e. only 1 of the 162 pairs of observations compare stacks of PC
changes.

31



Figure 3: Histogram of changes in SOC observed by the studies used for model validation in response to
changed cropping practices involving crops from the cotton-type CFG.

Table 7: Descriptive dataset attributes for studies used in
validation of CROP x cotton.
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Study name Citation(s) Location Year
initiated

Year(s)
measured LRR

IPCC
climate
zone

Soil
texture

Clay
content
(%)

SOC
measurement
method(s)

N
observations

five points Mitchell
et al.
(2015),
Mitchell
et al.
(2017), and
Veenstra
et al. (2006)

Five Points,
CA

1999 2004,
2007,
2013

C WTD ClLo 39 dry combustion 6

fort valley Sainju,
Whitehead,
and Singh
(2005)

Fort Valley,
GA

1999 2002 P
WTM

SaLo 10 dry combustion 54

goias Ferreira
et al. (2019)

Goias,
Brazil

2005 2014 TrM Cl 50 dry combustion 4 (1 stack
PCs)

narrabri field6 Rochester
(2011)

Narrabri,
New South
Wales

1995 2000,
2002,
2004,
2006,
2008

WTD Cl 56 wet oxidation 50

narrabri fieldC1 Senapati
et al. (2014)

Narrabri,
New South
Wales

1985 1998,
2004,
2006,
2008,
2011,
2012

WTD Cl 53 dry combustion 6
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narrabri fieldD1 Hulugalle
et al. (2013)

Narrabri,
New South
Wales

2002 2005,
2006,
2007,
2008,
2009,
2010,
2011

WTD Cl 64 wet oxidation 42

8.3 CROP x soy x SOC

This category’s validation is usable in all project LRRs and soil textures because:

• The selected studies span 6 LRRs (C, H, L, M, P, S), 5 of which (H, L, M, P, S) are in the declared
project domain, as well as sites outside the US that are within the declared project climate zones
(CTD, TrM, WTD).

• 7 soil textures are included, all of which are in the declared project area: Cl, ClLo, Lo, SaLo, SiCl,
SiClLo, SiLo.

• Clay content spans 54 percentage points, from 10% to 64%.

• At least one study isolates effects, i.e. only 18 of the 295 pairs of observations compare stacks of PC
changes.
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Figure 4: Histogram of changes in SOC observed by the studies used for model validation in response to
changed cropping practices involving crops from the soy-type CFG.

Table 8: Descriptive dataset attributes for studies used in
validation of CROP x soy.
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Study name Citation(s) Location Year
initiated

Year(s)
measured LRR

IPCC
climate
zone

Soil
texture

Clay
content
(%)

SOC
measurement
method(s)

N
observations

brookings REAP Wegner
et al. (2018)
and
Osborne
and Lehman
(2018)

Brookings,
SD

2008 2012 M CTD SiClLo 35 dry combustion 6

davis2 Clark et al.
(1998)

Davis, CA 1988 1996 C WTD Lo 17 Walkley-Black
method

5 (4 stack
PCs)

five points Mitchell
et al.
(2015),
Mitchell
et al.
(2017), and
Veenstra
et al. (2006)

Five Points,
CA

1999 2004,
2007,
2013

C WTD ClLo 39 dry combustion 6

fort valley Sainju,
Whitehead,
and Singh
(2005)

Fort Valley,
GA

1999 2002 P
WTM

SaLo 10 dry combustion 45

goias Ferreira
et al. (2019)

Goias,
Brazil

2005 2014 TrM Cl 50 dry combustion 4 (1 stack
PCs)

hoytville Collins
et al. (1999)

Hoytville,
OH

1963 1993 L CTM SiClLo 40 dry combustion 3

imperial Denef et al.
(2008)

Imperial,
NE

1970 2012 H CTD Lo 24 dry combustion 3 (3 stack
PCs)
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kbs Station
(2021)

Hickory
Corners
KBS, MI

1993 2001 L CTM Lo 19 dry combustion 1 (1 stack
PCs)

mead Elliott et al.
(1994)

Mead, NE 1975 1992 M WTD SiClLo 35 dry combustion 1

mead2 Varvel
(2006)

Mead, NE 1982 1992,
1998,
2002

M WTD SiClLo 31 dry combustion 45

morrow Khan et al.
(2007)

Champaign-
Urbana, IL

1955 2005 M
WTM

SiLo 25 dichromate
oxidation
technique of
Mebius (1960)

4

narrabri field6 Rochester
(2011)

Narrabri,
New South
Wales

1995 2000,
2002,
2004,
2006,
2008

WTD Cl 56 wet oxidation 45

narrabri fieldD1 Hulugalle
et al. (2013)

Narrabri,
New South
Wales

2002 2005,
2006,
2007,
2008,
2009,
2010,
2011

WTD Cl 64 wet oxidation 35

otis Denef et al.
(2008)

Otis, CO 1966 2012 H CTD Lo 26 dry combustion 3 (3 stack
PCs)

rodale Elliott et al.
(1994) and
Pimentel
et al. (2005)

Kutztown,
PA

1981 1992,
2002

S
WTM

SiLo 30 not reported 6 (6 stack
PCs)
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russellranch LTRAS
Kong et al.
(2005)

Winter, CA 1993 1997,
2003,
2012

C WTD SiLo 18 dry combustion 8

saginaw Christenson
(1997)

Saginaw, MI 1972 1981,
1991

L CTM SiCl 47 dry combustion 28

swiftcurrent Campbell
and Zentner
(1997) and
Campbell
et al. (2007)

Swift
Current, SK

1966 1981,
1984,
1990,
1993,
1996

CTD SiLo 20 dry combustion 20

tribune Halvorson
and Schlegel
(2012)

Tribune, KS 2001 2010 H WTD SiLo 26 dry combustion 3

wooster Collins
et al. (1999)
and Dick,
Edwards,
and McCoy
(1997)

Wooster,
OH

1962 1971,
1980,
1992

M CTM SiLo 15 dry combustion,
Walkley-Black
method
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8.4 CROP x wheat x SOC

This category’s validation is usable in all project LRRs and soil textures because:

• The selected studies span 6 LRRs (C, H, L, M, P, S), 5 of which (H, L, M, P, S) are in the declared
project domain, as well as sites outside the US that are within the declared project climate zones
(CTD, WTD).

• 8 soil textures are included, all of which are in the declared project area: Cl, ClLo, Lo, SaClLo, SaLo,
SiCl, SiClLo, SiLo.
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• Clay content spans 54 percentage points, from 10% to 64%.

• At least one study isolates effects, i.e. only 17 of the 326 pairs of observations compare stacks of PC
changes.

Figure 5: Histogram of changes in SOC observed by the studies used for model validation in response to
changed cropping practices involving crops from the wheat-type CFG.
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Table 9: Descriptive dataset attributes for studies used in
validation of CROP x wheat.

Study name Citation(s) Location Year
initiated

Year(s)
measured LRR

IPCC
climate
zone

Soil
texture

Clay
content
(%)

SOC
measurement
method(s)

N
observations

brookings REAP Wegner
et al. (2018)
and
Osborne
and Lehman
(2018)

Brookings,
SD

2008 2012 M CTD SiClLo 35 dry combustion 6

dalhart Halvorson
et al. (2009)

Dalhart, TX 1999 2006 H WTD SaLo 18 dry combustion 1

davis2 Clark et al.
(1998)

Davis, CA 1988 1996 C WTD Lo 17 Walkley-Black
method

5 (4 stack
PCs)

five points Mitchell
et al.
(2015),
Mitchell
et al.
(2017), and
Veenstra
et al. (2006)

Five Points,
CA

1999 2004,
2007,
2013

C WTD ClLo 39 dry combustion 6

fort valley Sainju,
Whitehead,
and Singh
(2005)

Fort Valley,
GA

1999 2002 P
WTM

SaLo 10 dry combustion 45

hoytville Collins
et al. (1999)

Hoytville,
OH

1963 1993 L CTM SiClLo 40 dry combustion 1

imperial Denef et al.
(2008)

Imperial,
NE

1970 2012 H CTD Lo 24 dry combustion 3 (3 stack
PCs)
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kbs Station
(2021)

Hickory
Corners
KBS, MI

1993 2001 L CTM Lo 19 dry combustion 1 (1 stack
PCs)

lethbridge2 Janzen
et al. (1997)

Lethbridge,
AB

1951 1967,
1974,
1985,
1992

CTD Lo 25 dry combustion 24

lethbridgeABC Monreal
and Janzen
(1993)

Lethbridge,
AB

1910 1922,
1940,
1953,
1967,
1990

CTD SaClLo 31 dry combustion
(total C) and
hot digestion
with HCI
(inorganic C) to
determine
organic C
indirectly

10

mead Elliott et al.
(1994)

Mead, NE 1975 1992 M WTD SiClLo 35 dry combustion 1

mead2 Varvel
(2006)

Mead, NE 1982 1992,
1998,
2002

M WTD SiClLo 31 dry combustion 18

morrow Khan et al.
(2007)

Champaign-
Urbana, IL

1955 2005 M
WTM

SiLo 25 dichromate
oxidation
technique of
Mebius (1960)

2

narrabri field6 Rochester
(2011)

Narrabri,
New South
Wales

1995 2000,
2002,
2004,
2006,
2008

WTD Cl 56 wet oxidation 35
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narrabri fieldC1 Senapati
et al. (2014)

Narrabri,
New South
Wales

1985 1998,
2004,
2006,
2008,
2011,
2012

WTD Cl 53 dry combustion 6

narrabri fieldD1 Hulugalle
et al. (2013)

Narrabri,
New South
Wales

2002 2005,
2006,
2007,
2008,
2009,
2010,
2011

WTD Cl 64 wet oxidation 35

otis Denef et al.
(2008)

Otis, CO 1966 2012 H CTD Lo 26 dry combustion 3 (3 stack
PCs)

rodale Elliott et al.
(1994) and
Pimentel
et al. (2005)

Kutztown,
PA

1981 1992,
2002

S
WTM

SiLo 30 not reported 6 (6 stack
PCs)

russellranch LTRAS
Kong et al.
(2005)

Winter, CA 1993 1997,
2003,
2012

C WTD SiLo 18 dry combustion 11

saginaw Christenson
(1997)

Saginaw, MI 1972 1981,
1991

L CTM SiCl 47 dry combustion 30

swiftcurrent Campbell
and Zentner
(1997) and
Campbell
et al. (2007)

Swift
Current, SK

1966 1981,
1984,
1990,
1993,
1996

CTD SiLo 20 dry combustion 55
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tribune Halvorson
and Schlegel
(2012)

Tribune, KS 2001 2010 H WTD SiLo 26 dry combustion 6

wooster Collins
et al. (1999)
and Dick,
Edwards,
and McCoy
(1997)

Wooster,
OH

1962 1971,
1980,
1992

M CTM SiLo 15 dry combustion,
Walkley-Black
method

16

8.5 DISTURB x corn x SOC

This category’s validation is usable in all project LRRs and soil textures because:

• The selected studies span 5 LRRs (K, L, M, N, P), all of which are in the declared project domain,
as well as one site outside the US that is within the declared project climate zones (TrM).

• 5 soil textures are included, all of which are in the declared project area: Cl, Lo, SaLo, SiClLo, SiLo.

• Clay content spans 40 percentage points, from 10% to 50%.

• At least one study isolates effects, i.e. only 1 of the 225 pairs of observations compare stacks of PC
changes.
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Figure 6: Histogram of changes in SOC observed by the studies used for model validation in response to
changed tillage practices involving crops from the corn-type CFG.

Table 10: Descriptive dataset attributes for studies used in
validation of DISTURB x corn.
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Study name Citation(s) Location Year
initiated

Year(s)
measured LRR

IPCC
climate
zone

Soil
texture

Clay
content
(%)

SOC
measurement
method(s)

N
observations

brookings REAP Wegner
et al. (2018)
and
Osborne
and Lehman
(2018)

Brookings,
SD

2008 2012 M CTD SiClLo 35 dry combustion 8

dixonsprings Olson,
Ebelhar,
and Lang
(2010)

Dixon
Springs, IL

1989 1992,
2000,
2003,
2007,
2009

N
WTM

SiLo 19 Walkley-Black
method

15

fort valley Sainju,
Whitehead,
and Singh
(2005)

Fort Valley,
GA

1999 2002 P
WTM

SaLo 10 dry combustion 36

goias Ferreira
et al. (2019)

Goias,
Brazil

2005 2014 TrM Cl 50 dry combustion 1 (1 stack
PCs)

hoytville Collins
et al.
(1999),
Jarecki and
Lal (2005),
and
Mestelan
(2008)

Hoytville,
OH

1963 1993,
2003,
2005

L CTM SiClLo 40 dry combustion 5
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ithaca2 Jin and
Varvel
(2018b) and
Jin et al.
(2015)

Ithaca, NE 1998 2001,
2007,
2011

M WTD SiClLo 32 dry combustion 9

ithacaNE Jin and
Varvel
(2018a) and
Schmer
et al. (2014)

Ithaca, NE 2001 2010,
2014

M WTD SiLo 26 dry combustion 18

kbs Station
(2021)

Hickory
Corners
KBS, MI

1993 2001 L CTM Lo 19 dry combustion 1

lafayette Elliott et al.
(1994)

Lafayette,
IN

1975 1992 M
WTM

SiClLo 36 dry combustion 3

lexington Blevins
et al. (1983)
and Ismail,
Blevins, and
Frye (1994)

Lexington,
KY

1970 1980,
1989

N
WTM

SiLo 23 dry combustion,
sulfuric
acid-permanganate
method of
Allison (1965)

8

rosemount Clapp et al.
(2000) and
Dolan et al.
(2006)

Rosemount,
MN

1980 1982,
1984,
1986,
1989,
1991,
1993,
2002

K CTD SiLo 24 dry combustion 93
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scharleston Collins
et al. (1999)
and Jarecki
and Lal
(2005)

South
Charleston,
OH

1962 1992,
2003

M
WTM

SiLo 20 dry combustion 6

wooster Collins
et al.
(1999),
Dick,
Edwards,
and McCoy
(1997), and
Mestelan
(2008)

Wooster,
OH

1962 1971,
1980,
1992,
2005

M CTM SiLo 15 dry combustion,
Walkley-Black
method
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8.6 DISTURB x cotton x SOC

This category’s validation is usable in all project climate zones and soil textures because:

• The observations within the US span only 2 LRRs (C, P), only one of which (P) is in the declared
project domain, but the studies also include sites outside the US that are within the declared project
climate zones (TrM, WTD). Collectively across US and international sites, the validation data are
taken from four distinct agricultural regions (LRR C, LRR P, Brazil, Australia) across three climate
zones (TrM, WTD, WTM), all of which are in the declared project domain. Following Model
Requirements section 3.3, requirement 1 (“Datasets may be used from studies outside of the US.
However, the associated IPCC climate zone where these datasets were collected should correspond
to the declared IPCC climate zones of the project.”), we interpret three project climate zones as
equivalent to three project LRRs for purposes of meeting the bioclimatic distribution requirements
using data from outside the US.
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• 3 soil textures are included, all of which are in the declared project area: Cl, ClLo, SaLo.

• Clay content spans 43 percentage points, from 10% to 53%.

• At least one study isolates effects, i.e. only 1 of the 49 pairs of observations compare stacks of PC
changes.
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Figure 7: Histogram of changes in SOC observed by the studies used for model validation in response to
changed tillage practices involving crops from the cotton-type CFG.

Table 11: Descriptive dataset attributes for studies used in
validation of DISTURB x cotton.
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Study name Citation(s) Location Year
initiated

Year(s)
measured LRR

IPCC
climate
zone

Soil
texture

Clay
content
(%)

SOC
measurement
method(s)

N
observations

five points Mitchell
et al.
(2015),
Mitchell
et al.
(2017), and
Veenstra
et al. (2006)

Five Points,
CA

1999 2004,
2007,
2013

C WTD ClLo 39 dry combustion 6

fort valley Sainju,
Whitehead,
and Singh
(2005)

Fort Valley,
GA

1999 2002 P
WTM

SaLo 10 dry combustion 36

goias Ferreira
et al. (2019)

Goias,
Brazil

2005 2014 TrM Cl 50 dry combustion 1 (1 stack
PCs)

narrabri fieldC1 Senapati
et al. (2014)

Narrabri,
New South
Wales

1985 1998,
2004,
2006,
2008,
2011,
2012

WTD Cl 53 dry combustion 6

8.7 DISTURB x soy x SOC

This category’s validation is usable in all project LRRs and soil textures because:

• The selected studies span 5 LRRs (C, L, M, N, P), 4 of which (L, M, N, P) are in the declared project
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domain, as well as one site outside the US that is within the declared project climate zones (TrM).

• 6 soil textures are included, all of which are in the declared project area: Cl, ClLo, Lo, SaLo, SiClLo,
SiLo.

• Clay content spans 40 percentage points, from 10% to 50%.

• At least one study isolates effects, i.e. only 1 of the 66 pairs of observations compare stacks of PC
changes.
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Figure 8: Histogram of changes in SOC observed by the studies used for model validation in response to
changed tillage practices involving crops from the soy-type CFG.

Table 12: Descriptive dataset attributes for studies used in
validation of DISTURB x soy.
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Study name Citation(s) Location Year
initiated

Year(s)
measured LRR

IPCC
climate
zone

Soil
texture

Clay
content
(%)

SOC
measurement
method(s)

N
observations

brookings REAP Wegner
et al. (2018)
and
Osborne
and Lehman
(2018)

Brookings,
SD

2008 2012 M CTD SiClLo 35 dry combustion 8

dixonsprings Olson,
Ebelhar,
and Lang
(2010)

Dixon
Springs, IL

1989 1992,
2000,
2003,
2007,
2009

N
WTM

SiLo 19 Walkley-Black
method

15

five points Mitchell
et al.
(2015),
Mitchell
et al.
(2017), and
Veenstra
et al. (2006)

Five Points,
CA

1999 2004,
2007,
2013

C WTD ClLo 39 dry combustion 3

fort valley Sainju,
Whitehead,
and Singh
(2005)

Fort Valley,
GA

1999 2002 P
WTM

SaLo 10 dry combustion 18

goias Ferreira
et al. (2019)

Goias,
Brazil

2005 2014 TrM Cl 50 dry combustion 1 (1 stack
PCs)
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hoytville Collins
et al. (1999)
and Jarecki
and Lal
(2005)

Hoytville,
OH

1963 1993,
2003

L CTM SiClLo 40 dry combustion 3

kbs Station
(2021)

Hickory
Corners
KBS, MI

1993 2001 L CTM Lo 19 dry combustion 1

lafayette Elliott et al.
(1994)

Lafayette,
IN

1975 1992 M
WTM

SiClLo 36 dry combustion 3

wooster Collins
et al. (1999)
and Dick,
Edwards,
and McCoy
(1997)

Wooster,
OH

1962 1971,
1980,
1992

M CTM SiLo 15 dry combustion,
Walkley-Black
method

14

8.8 DISTURB x wheat x SOC

This category’s validation is usable in all project LRRs and soil textures because:

• The selected studies span 8 LRRs (B, C, F, G, H, L, M, P), 6 of which (F, G, H, L, M, P) are in the
declared project domain.

• 5 soil textures are included, all of which are in the declared project area: ClLo, Lo, SaLo, SiClLo,
SiLo.

• Clay content spans 30 percentage points, from 10% to 40%.

• At least one study isolates effects, i.e. 0 of the 87 pairs of observations compare stacks of PC changes.

54



Figure 9: Histogram of changes in SOC observed by the studies used for model validation in response to
changed tillage practices involving crops from the wheat-type CFG.

Table 13: Descriptive dataset attributes for studies used in
validation of DISTURB x wheat.
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Study name Citation(s) Location Year
initiated

Year(s)
measured LRR

IPCC
climate
zone

Soil
texture

Clay
content
(%)

SOC
measurement
method(s)

N
observations

akron Mikha,
Vigil, and
Benjamin
(2013)

Akron, CO 1992 2006 G CTD SiLo 25 dry combustion 1

brookings REAP Wegner
et al. (2018)
and
Osborne
and Lehman
(2018)

Brookings,
SD

2008 2012 M CTD SiClLo 35 dry combustion 4

five points Mitchell
et al.
(2015),
Mitchell
et al.
(2017), and
Veenstra
et al. (2006)

Five Points,
CA

1999 2004,
2007,
2013

C WTD ClLo 39 dry combustion 6

fort valley Sainju,
Whitehead,
and Singh
(2005)

Fort Valley,
GA

1999 2002 P
WTM

SaLo 10 dry combustion 18

hoytville Collins
et al. (1999)

Hoytville,
OH

1963 1993 L CTM SiClLo 40 dry combustion 1

kbs Station
(2021)

Hickory
Corners
KBS, MI

1993 2001 L CTM Lo 19 dry combustion 1
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mandan crop Halvorson,
Wienhold,
and Black
(2002)

Mandan,
ND

1984 1990 F CTD SiLo 20 dry combustion 12

pendleton1 Bista et al.
(2016),
Ghimire,
Machado,
and
Rhinhart
(2015), and
Rasmussen
and Smiley
(1997)

Pendleton,
OR

1931 1941,
1951,
1976,
1986,
1995,
2005,
2010

B WTD SiLo 22 dry combustion,
Walkley-Black

16

pendleton2 Ghimire,
Machado,
and Bista
(2017)

Pendleton,
OR

1940 1995 B WTD SiLo 24 dry combustion 18

sidney Elliott et al.
(1994)

Sidney, NE 1970 1993 H CTD Lo 25 dry combustion 3

wooster Collins
et al. (1999)
and Dick,
Edwards,
and McCoy
(1997)

Wooster,
OH

1962 1971,
1980,
1992

M CTM SiLo 15 dry combustion,
Walkley-Black
method

7

8.9 NFERT x corn x SOC

This category’s validation is usable in all project LRRs and soil textures because:
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• The selected studies span 9 LRRs (C, E, H, K, L, M, N, P, S), 8 of which (E, H, K, L, M, N, P, S)
are in the declared project domain.

• 6 soil textures are included, all of which are in the declared project area: ClLo, Lo, LoSa, SaLo,
SiClLo, SiLo.

• Clay content spans 25 percentage points, from 10% to 35%.

• At least one study isolates effects, i.e. only 19 of the 166 pairs of observations compare stacks of PC
changes.
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Figure 10: Histogram of changes in SOC observed by the studies used for model validation in response to
changed nitrogen practices involving crops from the corn-type CFG.

Table 14: Descriptive dataset attributes for studies used in
validation of NFERT x corn.
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Study name Citation(s) Location Year
initiated

Year(s)
measured LRR

IPCC
climate
zone

Soil
texture

Clay
content
(%)

SOC
measurement
method(s)

N
observations

ardec manure Halvorson,
Stewart,
and
Del Grosso
(2016)

Fort Collins,
CO

2011 2014 E CTD ClLo 34 dry combustion 2 (1 stack
PCs)

ardec1 Halvorson
and Jantalia
(2011)

Fort Collins,
CO

1999 2009 E CTD ClLo 34 dry combustion 4

dalhart Halvorson
et al. (2009)

Dalhart, TX 1999 2002 H WTD SaLo 18 dry combustion 1

davis2 Clark et al.
(1998)

Davis, CA 1988 1996 C WTD Lo 17 Walkley-Black
method

4 (4 stack
PCs)

elansing2 Vitosh,
Davis, and
Knezek
(1973)

East
Lansing, MI

1963 1971 L CTM LoSa 10 high frequency
induction
furnace

3 (3 stack
PCs)

fort valley Sainju,
Whitehead,
and Singh
(2005)

Fort Valley,
GA

1999 2002 P
WTM

SaLo 10 dry combustion 36

ithaca2 Jin and
Varvel
(2018b) and
Jin et al.
(2015)

Ithaca, NE 1998 2001,
2007,
2011

M WTD SiClLo 32 dry combustion 18

kbs Station
(2021)

Hickory
Corners
KBS, MI

1993 2001 L CTM Lo 19 dry combustion 1 (1 stack
PCs)
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lexington Blevins
et al. (1983)
and Ismail,
Blevins, and
Frye (1994)

Lexington,
KY

1970 1980,
1989

N
WTM

SiLo 23 dry combustion,
sulfuric
acid-permanganate
method of
Allison (1965)

24

mead Elliott et al.
(1994)

Mead, NE 1975 1992 M WTD SiClLo 35 dry combustion 1 (1 stack
PCs)

mead2 Varvel
(2006)

Mead, NE 1982 1992,
1998,
2002

M WTD SiClLo 31 dry combustion 54

morrow Khan et al.
(2007)

Champaign-
Urbana, IL

1955 2005 M
WTM

SiLo 25 dichromate
oxidation
technique of
Mebius (1960)

3

rodale Elliott et al.
(1994) and
Pimentel
et al. (2005)

Kutztown,
PA

1981 1992,
2002

S
WTM

SiLo 30 not reported 6 (6 stack
PCs)

rosemount Dolan et al.
(2006)

Rosemount,
MN

1980 2002 K CTD SiLo 24 dry combustion 6

russellranch LTRAS
Kong et al.
(2005)

Winter, CA 1993 1997,
2003,
2012

C WTD SiLo 18 dry combustion 3 (3 stack
PCs)

8.10 NFERT x soy x SOC

This category’s validation is usable in all project LRRs and soil textures because:

• The selected studies span 5 LRRs (C, L, M, P, S), 4 of which (L, M, P, S) are in the declared project
domain.
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• 4 soil textures are included, all of which are in the declared project area: Lo, SaLo, SiClLo, SiLo.

• Clay content spans 25 percentage points, from 10% to 35%.

• At least one study isolates effects, i.e. only 12 of the 77 pairs of observations compare stacks of PC
changes.
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Figure 11: Histogram of changes in SOC observed by the studies used for model validation in response to
changed nitrogen practices involving crops from the soy-type CFG.

Table 15: Descriptive dataset attributes for studies used in
validation of NFERT x soy.
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Study name Citation(s) Location Year
initiated

Year(s)
measured LRR

IPCC
climate
zone

Soil
texture

Clay
content
(%)

SOC
measurement
method(s)

N
observations

davis2 Clark et al.
(1998)

Davis, CA 1988 1996 C WTD Lo 17 Walkley-Black
method

4 (4 stack
PCs)

fort valley Sainju,
Whitehead,
and Singh
(2005)

Fort Valley,
GA

1999 2002 P
WTM

SaLo 10 dry combustion 18

kbs Station
(2021)

Hickory
Corners
KBS, MI

1993 2001 L CTM Lo 19 dry combustion 1 (1 stack
PCs)

mead Elliott et al.
(1994)

Mead, NE 1975 1992 M WTD SiClLo 35 dry combustion 1 (1 stack
PCs)

mead2 Varvel
(2006)

Mead, NE 1982 1992,
1998,
2002

M WTD SiClLo 31 dry combustion 45

morrow Khan et al.
(2007)

Champaign-
Urbana, IL

1955 2005 M
WTM

SiLo 25 dichromate
oxidation
technique of
Mebius (1960)

2

rodale Elliott et al.
(1994) and
Pimentel
et al. (2005)

Kutztown,
PA

1981 1992,
2002

S
WTM

SiLo 30 not reported 6 (6 stack
PCs)

8.11 NFERT x wheat x SOC

This category’s validation is usable in all project LRRs and soil textures because:
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• The selected studies span 8 LRRs (B, C, F, H, L, M, P, S), 6 of which (F, H, L, M, P, S) are in the
declared project domain, as well as sites outside the US that are within the declared project climate
zones (CTM, CTD).

• 4 soil textures are included, all of which are in the declared project area: Lo, SaLo, SiClLo, SiLo.

• Clay content spans 25 percentage points, from 10% to 35%.

• At least one study isolates effects, i.e. only 21 of the 173 pairs of observations compare stacks of PC
changes.
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Figure 12: Histogram of changes in SOC observed by the studies used for model validation in response to
changed nitrogen practices involving crops from the wheat-type CFG.

Table 16: Descriptive dataset attributes for studies used in
validation of NFERT x wheat.
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Study name Citation(s) Location Year
initiated

Year(s)
measured LRR

IPCC
climate
zone

Soil
texture

Clay
content
(%)

SOC
measurement
method(s)

N
observations

broadbalk Research
(2014) Rothamsted,

England

1844 1893,
1914,
1944,
1992,
1997,
2005

CTM SiClLo 25 dry combustion 12 (6 stack
PCs)

dalhart Halvorson
et al. (2009)

Dalhart, TX 1999 2002 H WTD SaLo 18 dry combustion 1

davis2 Clark et al.
(1998)

Davis, CA 1988 1996 C WTD Lo 17 Walkley-Black
method

4 (4 stack
PCs)

fort valley Sainju,
Whitehead,
and Singh
(2005)

Fort Valley,
GA

1999 2002 P
WTM

SaLo 10 dry combustion 18

kbs Station
(2021)

Hickory
Corners
KBS, MI

1993 2001 L CTM Lo 19 dry combustion 1 (1 stack
PCs)

mandan crop Halvorson,
Wienhold,
and Black
(2002)

Mandan,
ND

1984 1990 F CTD SiLo 20 dry combustion 18

mead Elliott et al.
(1994)

Mead, NE 1975 1992 M WTD SiClLo 35 dry combustion 1 (1 stack
PCs)

mead2 Varvel
(2006)

Mead, NE 1982 1992,
1998,
2002

M WTD SiClLo 31 dry combustion 18
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morrow Khan et al.
(2007)

Champaign-
Urbana, IL

1955 2005 M
WTM

SiLo 25 dichromate
oxidation
technique of
Mebius (1960)

1

pendleton1 Bista et al.
(2016),
Ghimire,
Machado,
and
Rhinhart
(2015), and
Rasmussen
and Smiley
(1997)

Pendleton,
OR

1931 1941,
1951,
1976,
1986,
1995,
2005,
2010

B WTD SiLo 22 dry combustion,
Walkley-Black

24

pendleton2 Ghimire,
Machado,
and Bista
(2017)

Pendleton,
OR

1940 1995 B WTD SiLo 24 dry combustion 45

rodale Elliott et al.
(1994) and
Pimentel
et al. (2005)

Kutztown,
PA

1981 1992,
2002

S
WTM

SiLo 30 not reported 6 (6 stack
PCs)

russellranch LTRAS
Kong et al.
(2005)

Winter, CA 1993 1997,
2003,
2012

C WTD SiLo 18 dry combustion 9 (3 stack
PCs)

swiftcurrent Campbell
and Zentner
(1997) and
Campbell
et al. (2007)

Swift
Current, SK

1966 1981,
1984,
1990,
1993,
1996

CTD SiLo 20 dry combustion 15
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8.12 ORG x All x SOC

Follows Model Requirements section 3.3.1, paragraph 5

This category’s validation is usable in all project LRRs and soil textures because, when considering observations of the ORG PC
across all annual CFGS:

• The selected studies span 6 LRRs (B, C, E, L, M, S), 4 of which (E, L, M, S) are in the declared
project domain, as well as sites outside the US that are within the declared project climate zones
(CTM, CTD).

• 5 soil textures are included, all of which are in the declared project area: ClLo, Lo, LoSa, SiClLo,
SiLo.

• Clay content spans 29 percentage points, from 10% to 39%.

• At least one study isolates effects, i.e. only 20 of the 58 pairs of observations compare stacks of PC
changes.
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Figure 13: Histogram of changes in SOC observed by the studies used for model validation in response to
changed organic amendment practices involving crops from the All-type CFG.

Table 17: Descriptive dataset attributes for studies used in
validation of ORG x All.

70



Study name Citation(s) Location Year
initiated

Year(s)
measured LRR

IPCC
climate
zone

Soil
texture

Clay
content
(%)

SOC
measurement
method(s)

N
observations

ardec manure Halvorson,
Stewart,
and
Del Grosso
(2016)

Fort Collins,
CO

2011 2014 E CTD ClLo 34 dry combustion 2 (1 stack
PCs)

broadbalk Research
(2014) Rothamsted,

England

1844 1893,
1914,
1944,
1992,
1997,
2005

CTM SiClLo 25 dry combustion 12 (6 stack
PCs)

davis2 Clark et al.
(1998)

Davis, CA 1988 1996 C WTD Lo 17 Walkley-Black
method

2 (2 stack
PCs)

elansing2 Vitosh,
Davis, and
Knezek
(1973)

East
Lansing, MI

1963 1971 L CTM LoSa 10 high frequency
induction
furnace

3 (3 stack
PCs)

lethbridge manure Hao et al.
(2003)

Lethbridge,
AB

1973 1998 CTD ClLo 39 dry combustion 6

lethbridge2 Janzen
et al. (1997)

Lethbridge,
AB

1951 1967,
1974,
1985,
1992

CTD Lo 25 dry combustion 4

mead Elliott et al.
(1994)

Mead, NE 1975 1992 M WTD SiClLo 35 dry combustion 1 (1 stack
PCs)
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pendleton1 Bista et al.
(2016),
Ghimire,
Machado,
and
Rhinhart
(2015), and
Rasmussen
and Smiley
(1997)

Pendleton,
OR

1931 1941,
1951,
1976,
1986,
1995,
2005,
2010

B WTD SiLo 22 dry combustion,
Walkley-Black

21

rodale Elliott et al.
(1994) and
Pimentel
et al. (2005)

Kutztown,
PA

1981 1992,
2002

S
WTM

SiLo 30 not reported 4 (4 stack
PCs)

russellranch LTRAS
Kong et al.
(2005)

Winter, CA 1993 1997,
2003,
2012

C WTD SiLo 18 dry combustion 3 (3 stack
PCs)

8.13 ORG x corn x SOC

Follows Model Requirements section 3.3.1, paragraph 5

This category is presented for context only to support the use of its data as part of 8.12 “ORG x All x SOC”, but the validation
would be usable in all project LRRs and soil textures because:

• The selected studies span 5 LRRs (C, E, L, M, S), 4 of which (E, L, M, S) are in the declared project
domain.

• 5 soil textures are included, all of which are in the declared project area: ClLo, Lo, LoSa, SiClLo,
SiLo.

72



• Clay content spans 25 percentage points, from 10% to 35%.

• At least one study isolates effects, i.e. only 14 of the 15 pairs of observations compare stacks of PC
changes.

Figure 14: Histogram of changes in SOC observed by the studies used for model validation in response to
changed organic amendment practices involving crops from the corn-type CFG.
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Table 18: Descriptive dataset attributes for studies used in
validation of ORG x corn.

Study name Citation(s) Location Year
initiated

Year(s)
measured LRR

IPCC
climate
zone

Soil
texture

Clay
content
(%)

SOC
measurement
method(s)

N
observations

ardec manure Halvorson,
Stewart,
and
Del Grosso
(2016)

Fort Collins,
CO

2011 2014 E CTD ClLo 34 dry combustion 2 (1 stack
PCs)

davis2 Clark et al.
(1998)

Davis, CA 1988 1996 C WTD Lo 17 Walkley-Black
method

2 (2 stack
PCs)

elansing2 Vitosh,
Davis, and
Knezek
(1973)

East
Lansing, MI

1963 1971 L CTM LoSa 10 high frequency
induction
furnace

3 (3 stack
PCs)

mead Elliott et al.
(1994)

Mead, NE 1975 1992 M WTD SiClLo 35 dry combustion 1 (1 stack
PCs)

rodale Elliott et al.
(1994) and
Pimentel
et al. (2005)

Kutztown,
PA

1981 1992,
2002

S
WTM

SiLo 30 not reported 4 (4 stack
PCs)

russellranch LTRAS
Kong et al.
(2005)

Winter, CA 1993 1997,
2003,
2012

C WTD SiLo 18 dry combustion 3 (3 stack
PCs)

8.14 ORG x soy x SOC

Follows Model Requirements section 3.3.1, paragraph 5
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This category is presented for context only to support the use of its data as part of 8.12 “ORG x All x SOC”, and has insufficient
data to validate for the entire project:

• The selected studies span 3 LRRs (C, M, S), only 2 of which (M, S) are in the declared project
domain. Validating this category for all the geographies in project CAR1459 would require data
from at least 3 project LRRS (Model Requirements section 3.3 Requirement 2), so we present the
data only for context to support the validation of 8.12 “ORG x All x SOC”

• 3 soil textures are included, all of which are in the declared project area: Lo, SiClLo, SiLo.

• Clay content spans 18 percentage points, from 17% to 35%.

• No study isolates effects, i.e. all 7 of the 7 pairs of observations compare stacks of PC changes.
Therefore the Model Requirement that a validation dataset not be made up exclusively of
stacked-practice observations is not met.
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Figure 15: Histogram of changes in SOC observed by the studies used for model validation in response to
changed organic amendment practices involving crops from the soy-type CFG.

Table 19: Descriptive dataset attributes for studies used in
validation of ORG x soy.
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Study name Citation(s) Location Year
initiated

Year(s)
measured LRR

IPCC
climate
zone

Soil
texture

Clay
content
(%)

SOC
measurement
method(s)

N
observations

davis2 Clark et al.
(1998)

Davis, CA 1988 1996 C WTD Lo 17 Walkley-Black
method

2 (2 stack
PCs)

mead Elliott et al.
(1994)

Mead, NE 1975 1992 M WTD SiClLo 35 dry combustion 1 (1 stack
PCs)

rodale Elliott et al.
(1994) and
Pimentel
et al. (2005)

Kutztown,
PA

1981 1992,
2002

S
WTM

SiLo 30 not reported 4 (4 stack
PCs)

8.15 ORG x wheat x SOC

This category’s validation is usable in all project LRRs and soil textures because:

• The selected studies span 4 LRRs (B, C, M, S), only two of which (M, S) are in the declared project
domain, but the studies also include sites outside the US that are within the declared project climate
zones (CTM, CTD). Collectively across US and international sites, the validation data are taken
from six distinct agricultural regions (LRR B, LRR C, LRR M, LRR S, Canada, England) across four
climate zones (CTD, CTM, WTD, WTM), all of which are in the declared project domain. Following
Model Requirements section 3.3, requirement 1 (“Datasets may be used from studies outside of the
US. However, the associated IPCC climate zone where these datasets were collected should correspond
to the declared IPCC climate zones of the project.”), we interpret four project climate zones as
equivalent to four project LRRs for purposes of meeting the bioclimatic distribution requirements
using data from outside the US.

• 4 soil textures are included, all of which are in the declared project area: ClLo, Lo, SiClLo, SiLo.

• Clay content spans 22 percentage points, from 17% to 39%.
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• At least one study isolates effects, i.e. only 16 of the 53 pairs of observations compare stacks of PC
changes.

Figure 16: Histogram of changes in SOC observed by the studies used for model validation in response to
changed organic amendment practices involving crops from the wheat-type CFG.
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Table 20: Descriptive dataset attributes for studies used in
validation of ORG x wheat.

Study name Citation(s) Location Year
initiated

Year(s)
measured LRR

IPCC
climate
zone

Soil
texture

Clay
content
(%)

SOC
measurement
method(s)

N
observations

broadbalk Research
(2014) Rothamsted,

England

1844 1893,
1914,
1944,
1992,
1997,
2005

CTM SiClLo 25 dry combustion 12 (6 stack
PCs)

davis2 Clark et al.
(1998)

Davis, CA 1988 1996 C WTD Lo 17 Walkley-Black
method

2 (2 stack
PCs)

lethbridge manure Hao et al.
(2003)

Lethbridge,
AB

1973 1998 CTD ClLo 39 dry combustion 6

lethbridge2 Janzen
et al. (1997)

Lethbridge,
AB

1951 1967,
1974,
1985,
1992

CTD Lo 25 dry combustion 4

mead Elliott et al.
(1994)

Mead, NE 1975 1992 M WTD SiClLo 35 dry combustion 1 (1 stack
PCs)

pendleton1 Bista et al.
(2016),
Ghimire,
Machado,
and
Rhinhart
(2015), and
Rasmussen
and Smiley
(1997)

Pendleton,
OR

1931 1941,
1951,
1976,
1986,
1995,
2005,
2010

B WTD SiLo 22 dry combustion,
Walkley-Black

21
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rodale Elliott et al.
(1994) and
Pimentel
et al. (2005)

Kutztown,
PA

1981 1992,
2002

S
WTM

SiLo 30 not reported 4 (4 stack
PCs)

russellranch LTRAS
Kong et al.
(2005)

Winter, CA 1993 1997,
2003,
2012

C WTD SiLo 18 dry combustion 3 (3 stack
PCs)
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9 Bias evaluation

Follows Model Requirements Section 3.4 Summary of Requirements (p18)

9.1 Calculating Bias

In all categories, bias was computed for each study x PC x CFG combination as the mean difference
between modeled and observed practice effects per Eq. (2):

bias =
1

n

n∑
i=1

modeledi − observedi (2)

where observedi is the observed difference in SOC at the second time point for the ith experimental
treatment pair (e.g. SOCno-till − SOCtill), modeledi is the modeled difference in SOC at the second time
point for the ith experimental treatment pair, and n is the number of treatment pairs used from the study
(per Equation 3.1 of the Model Requirements). When a study reported treatment pairs fitting multiple PC
x crop categories, only the observations matching the category of interest were included in the calculation.

Note that while Eq. (2) calculates bias at the second time point, it is identical to calculating bias in emission
reductions between the first and second time point. This is because measured and observed SOC at the
first time point are always identical (the SEP requires that modeled SOC be constrained to equal observed
SOC at the first time point), so these values cancel out when subtracting observedi from modeledi.

Bias for each category was then computed as the mean of all per-study biases in that category, per section
3.4 of the Model Requirements.

Bias was compared against the pooled measurement uncertainty (PMU) of the observed data. Per Section
1.6 “Changes from previous validation report” and Appendix G, the PMU was calculated using Eq. (3):

PMU =

√∑k
i=1 σ

2
i (ni1 + ni2 − 2)∑k

i=1(ni1 + ni2 − 2)
(3)

where k is the number of observations with uncertainty reported, σi is the standard error of the ith

observation of differences between the treatments, ni1 and ni2 are the number of replicates included in first
and second study in the ith treatment pair, and ni1 + ni2 − 2 is the degrees of freedom of σ2

i .

9.2 Example PMU calculation

The CROP × Corn validation dataset contained k = 15 observations of practice changes (Table 21) that
reported uncertainties for both observed treatments and therefore allow computing the standard error of
the difference between treatments as

√
σ2
1 + σ2

2.
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Table 21: Pairs of observations from the CROP x corn validation dataset for which estimates of
measurement uncertainty were available, showing calculation of standard error of difference to be used
for calculating PMU of SOC change.

site n trt1 n trt2 se trt1 se trt2 se diff df se diff

hoytville 3 3 670 419 790.2 4
hoytville 3 3 419 37 420.6 4
hoytville 3 3 670 509 841.4 4
kbs 30 30 276 208 345.6 58
mead 4 4 455 288 538.5 6
wooster 3 3 171 215 274.7 4
wooster 3 3 154 80 173.5 4
wooster 3 3 127 215 249.7 4
wooster 3 3 179 80 196.1 4
wooster 3 3 127 171 213 4
wooster 3 3 179 154 236.1 4

Note that in this report’s validation dataset, uncertainty was expressed as standard error in all studies
that reported it. If any sites had reported standard deviation, the standard error of the difference for

those pairs of observation would have been
√
sd21/n1 + sd22/n2. The needed summations over the product

of degrees of freedom (df se diff) and standard error (se diff) to compute PMU are shown in Table 22.

Table 22: Computing pooled measurement uncertainty for CROP x corn from the standard errors of
differences shown in 21.

site n trt1 n trt2 se trt1 se trt2 se diff df se diff se2 se2 · df
hoytville 3 3 670 419 790.2 4 624416 2.498e+06
hoytville 3 3 419 37 420.6 4 176904 7.076e+05
hoytville 3 3 670 509 841.4 4 707954 2.832e+06
kbs 30 30 276 208 345.6 58 119439 6.927e+06
mead 4 4 455 288 538.5 6 289982 1.74e+06
wooster 3 3 171 215 274.7 4 75460 3.018e+05
wooster 3 3 154 80 173.5 4 30102 1.204e+05
wooster 3 3 127 215 249.7 4 62350 2.494e+05
wooster 3 3 179 80 196.1 4 38455 1.538e+05
wooster 3 3 127 171 213 4 45369 1.815e+05
wooster 3 3 179 154 236.1 4 55743 2.23e+05
sum NA NA NA NA NA 100 NA 1.593e+07√∑

se2 · df/
∑

df = PMU NA NA NA NA NA NA NA 399.2
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9.3 PMU coverage by category

Table 23: Pooled measurement uncertainty of difference in SOC between treatments (g m−2 across entire
observation interval), computed for each CFG x PC. N obs: Number of pairs of observations used in
uncertainty computation. N stacked: number of observations taken from stacked PCs. N sites: Number of
experimental sites the observation pairs were taken from. % obs: percentage of the observation pairs in the
full dataset (Table 5) with uncertainty available. % sites: percentage of the sites in the full dataset (Table
5) with uncertainty available for at least one pair of observations. Number of sites, percent of observations,
and percent of sites are not used in the PMU calculation but are presented to show the degree of data
coverage. Citations: a: (Collins et al., 1999); b: (Elliott et al., 1994); c: (Ghimire, Machado, and Rhinhart,
2015); d: (Jin and Varvel, 2018b; Jin et al., 2015); e: (Station, 2021); f: (Senapati et al., 2014)

PC CFG n obs n stacked n sites PMU citations % obs % sites

CROP corn 11 1 4 399.2 a,b,e 5 24
CROP cotton 6 0 1 240.2 f 4 17
CROP soy 11 1 4 399.2 a,b,e 4 20
CROP wheat 13 1 5 342.4 a,b,e,f 4 22
DISTURB corn 22 0 6 656.8 a,b,d,e 10 46
DISTURB cotton 6 0 1 209.3 f 12 25
DISTURB soy 8 0 4 467.5 a,b,e 12 44
DISTURB wheat 6 0 4 378.6 a,c,e 7 36
NFERT All 1 1 1 529.6 b 5 14
NFERT corn 20 2 3 868.6 b,d,e 12 20
NFERT soy 2 2 2 366.8 b,e 3 29
NFERT wheat 8 2 3 306.1 b,c,e 5 21
ORG All 4 1 2 372.8 b,c 7 20
ORG corn 1 1 1 529.6 b 7 17
ORG soy 1 1 1 529.6 b 14 33
ORG wheat 4 1 2 372.8 b,c 8 25
All PCs All CFGs 76 2 9 622.2 a,b,c,d,e,f 7 22

9.4 Bias across all categories

Pooled measurement uncertainty for the entire dataset: 622.19 g C m−2

Table 24: Model bias per study (g C/m2) across all PCs and
CFGs. Note that each study is validated in exactly one of
the 5 k-folds so only one bias value can be calculated. See
Table A2 for study fold assignments.

Fold Study n treatment pairs Bias

1 ardec manure 3 335.9
1 swiftcurrent 70 166.4
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1 mead2 117 60.17
1 hoytville 8 60.02
1 narrabri fieldC1 12 36.96
1 mandan crop 30 -36.44
1 imperial 3 -119.4
1 goias 4 -140.3
2 lethbridge manure 6 1537
2 brookings REAP 14 252.3
2 rosemount 99 224.3
2 ardec1 4 192.8
2 russellranch LTRAS 20 31.06
2 fort valley 126 -28.39
2 sidney 3 -57.64
2 five points 12 -244.7
2 dixonsprings 15 -277
3 dalhart 2 207
3 narrabri fieldD1 42 170.2
3 lexington 32 46.39
3 scharleston 6 -101.5
3 saginaw 30 -103.2
3 rodale 6 -109.5
3 lethbridgeABC 10 -315.4
3 akron 1 -545.9
3 morrow 7 -624.2
4 mead 2 223.1
4 lethbridge2 28 97.09
4 ithacaNE 18 3.69
4 otis 3 -25.16
4 narrabri field6 50 -67.63
4 broadbalk 18 -485.4
4 elansing2 3 -785.2
5 davis2 5 315.2
5 tribune 6 270.1
5 pendleton2 63 134
5 lafayette 3 31.88
5 pendleton1 61 -50.47
5 wooster 46 -88.42
5 ithaca2 27 -97.89
5 kbs 2 -250.4
1 All studies 247 45.4
2 All studies 299 181.1
3 All studies 136 -152.9
4 All studies 122 -148.5
5 All studies 213 32.99
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NA Across all folds and studies 1017 -3.87

Mean bias across all studies and PC x CFG combinations: -3.87 g C m−2

Is the absolute bias smaller than the PMU? Yes

9.5 CROP x corn x SOC

Pooled measurement uncertainty (PMU) = 399.18 g C m−2

Table 25: Model bias per study (g C/m2) for CROP x corn.
Note that each study is validated in exactly one of the 5
k-folds so only one bias value can be calculated. See Table
A2 for study fold assignments.

Study n treatment pairs Bias

hoytville 3 475.3
dalhart 1 454.8
brookings REAP 6 340.5
davis2 5 315.2
tribune 6 270.1
russellranch LTRAS 6 45.09
fort valley 54 10.42
otis 3 -25.16
wooster 24 -48.29
mead 1 -76.01
saginaw 30 -103.2
rodale 6 -109.5
imperial 3 -119.4
mead2 54 -150.5
goias 3 -188.4
morrow 4 -320.5
kbs 1 -620.9
Across all studies 210 8.79

Mean bias across all studies = 8.79 g C m−2

Is the absolute bias smaller than the PMU? Yes

9.6 CROP x cotton x SOC

Pooled measurement uncertainty (PMU) = 240.25 g C m−2
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Table 26: Model bias per study (g C/m2) CROP x cotton.
Note that each study is validated in exactly one of the 5
k-folds so only one bias value can be calculated. See Table
A2 for study fold assignments.

Study n treatment pairs Bias

narrabri fieldD1 42 170.2
fort valley 54 10.42
narrabri fieldC1 6 -37.74
narrabri field6 50 -67.63
goias 4 -140.3
five points 6 -228.5
Across all studies 162 -48.93

Mean bias across all studies = -48.93 g C m−2

Is the absolute bias smaller than the PMU? Yes

9.7 CROP x soy x SOC

Pooled measurement uncertainty (PMU) = 399.18 g C m−2

Table 27: Model bias per study (g C/m2) for CROP x soy.
Note that each study is validated in exactly one of the 5
k-folds so only one bias value can be calculated. See Table
A2 for study fold assignments.

Study n treatment pairs Bias

hoytville 3 475.3
brookings REAP 6 340.5
tribune 3 334.2
davis2 5 315.2
narrabri fieldD1 35 110
fort valley 45 11.57
otis 3 -25.16
russellranch LTRAS 8 -37.06
narrabri field6 45 -45.15
wooster 24 -48.29
swiftcurrent 20 -60.94
mead 1 -76.01
saginaw 28 -95.06
rodale 6 -109.5
imperial 3 -119.4
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goias 4 -140.3
mead2 45 -171.6
five points 6 -228.5
morrow 4 -320.5
kbs 1 -620.9
Across all studies 295 -25.59

Mean bias across all studies = -25.59 g C m−2

Is the absolute bias smaller than the PMU? Yes

9.8 CROP x wheat x SOC

Pooled measurement uncertainty (PMU) = 342.4 g C m−2

Table 28: Model bias per study (g C/m2) for CROP x wheat.
Note that each study is validated in exactly one of the 5
k-folds so only one bias value can be calculated. See Table
A2 for study fold assignments.

Study n treatment pairs Bias

hoytville 1 544
dalhart 1 454.8
brookings REAP 6 340.5
davis2 5 315.2
tribune 6 270.1
swiftcurrent 55 133.8
lethbridge2 24 56.5
narrabri fieldD1 35 50.58
fort valley 45 13.88
russellranch LTRAS 11 -12.08
otis 3 -25.16
narrabri fieldC1 6 -37.74
narrabri field6 35 -55.34
mead 1 -76.01
saginaw 30 -103.2
rodale 6 -109.5
imperial 3 -119.4
mead2 18 -225
five points 6 -228.5
wooster 16 -275.1
lethbridgeABC 10 -315.4
kbs 1 -620.9
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morrow 2 -782.4
Across all studies 326 -35.06

Mean bias across all studies = -35.06 g C m−2

Is the absolute bias smaller than the PMU? Yes

9.9 DISTURB x corn x SOC

Pooled measurement uncertainty (PMU) = 656.8 g C m−2

Table 29: Model bias per study (g C/m2) for DISTURB x
corn. Note that each study is validated in exactly one of the
5 k-folds so only one bias value can be calculated. See Table
A2 for study fold assignments.

Study n treatment pairs Bias

rosemount 93 209.8
brookings REAP 8 186.1
lexington 8 129.9
kbs 1 120.2
lafayette 3 31.88
ithacaNE 18 3.69
fort valley 36 -94.9
scharleston 6 -101.5
wooster 22 -132.2
ithaca2 9 -162.7
hoytville 5 -189.1
dixonsprings 15 -277
goias 1 -477.6
Across all studies 225 -57.95

Mean bias across all studies = -57.95 g C m−2

Is the absolute bias smaller than the PMU? Yes

9.10 DISTURB x cotton x SOC

Pooled measurement uncertainty (PMU) = 209.31 g C m−2
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Table 30: Model bias per study (g C/m2) for DISTURB x
cotton. Note that each study is validated in exactly one of
the 5 k-folds so only one bias value can be calculated. See
Table A2 for study fold assignments.

Study n treatment pairs Bias

narrabri fieldC1 6 111.7
fort valley 36 -94.9
five points 6 -260.9
goias 1 -477.6
Across all studies 49 -180.4

Mean bias across all studies = -180.45 g C m−2

Is the absolute bias smaller than the PMU? Yes

9.11 DISTURB x soy x SOC

Pooled measurement uncertainty (PMU) = 467.52 g C m−2

Table 31: Model bias per study (g C/m2) for DISTURB x
soy. Note that each study is validated in exactly one of the
5 k-folds so only one bias value can be calculated. See Table
A2 for study fold assignments.

Study n treatment pairs Bias

brookings REAP 8 186.1
kbs 1 120.2
lafayette 3 31.88
fort valley 18 -82.35
wooster 14 -198.3
five points 3 -241.4
dixonsprings 15 -277
hoytville 3 -313.1
goias 1 -477.6
Across all studies 66 -139.1

Mean bias across all studies = -139.06 g C m−2

Is the absolute bias smaller than the PMU? Yes
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9.12 DISTURB x wheat x SOC

Pooled measurement uncertainty (PMU) = 378.63 g C m−2

Table 32: Model bias per study (g C/m2) for DISTURB x
wheat. Note that each study is validated in exactly one of
the 5 k-folds so only one bias value can be calculated. See
Table A2 for study fold assignments.

Study n treatment pairs Bias

brookings REAP 4 225.5
pendleton2 18 139.7
kbs 1 120.2
pendleton1 16 86.55
mandan crop 12 85.43
wooster 7 -44.63
sidney 3 -57.64
fort valley 18 -82.04
five points 6 -260.9
akron 1 -545.9
hoytville 1 -701.7
Across all studies 87 -94.13

Mean bias across all studies = -94.13 g C m−2

Is the absolute bias smaller than the PMU? Yes

9.13 NFERT x corn x SOC

Pooled measurement uncertainty (PMU) = 868.65 g C m−2

Table 33: Model bias per study (g C/m2) for NFERT x corn.
Note that each study is validated in exactly one of the 5
k-folds so only one bias value can be calculated. See Table
A2 for study fold assignments.

Study n treatment pairs Bias

mead 1 522.2
rosemount 6 447.9
davis2 4 385.1
mead2 54 266.5
ardec manure 2 251.9
ardec1 4 192.8
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lexington 24 18.54
fort valley 36 -20.09
dalhart 1 -40.76
ithaca2 18 -65.5
russellranch LTRAS 3 -84.2
rodale 6 -109.5
kbs 1 -620.9
elansing2 3 -785.2
morrow 3 -1029
Across all studies 166 -44.69

Mean bias across all studies = -44.69 g C m−2

Is the absolute bias smaller than the PMU? Yes

9.14 NFERT x soy x SOC

Pooled measurement uncertainty (PMU) = 366.79 g C m−2

Table 34: Model bias per study (g C/m2) for NFERT x soy.
Note that each study is validated in exactly one of the 5
k-folds so only one bias value can be calculated. See Table
A2 for study fold assignments.

Study n treatment pairs Bias

mead 1 522.2
davis2 4 385.1
mead2 45 166.7
fort valley 18 -31.3
rodale 6 -109.5
kbs 1 -620.9
morrow 2 -732.7
Across all studies 77 -60.05

Mean bias across all studies = -60.05 g C m−2

Is the absolute bias smaller than the PMU? Yes

9.15 NFERT x wheat x SOC

Pooled measurement uncertainty (PMU) = 306.06 g C m−2
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Table 35: Model bias per study (g C/m2) for NFERT x
wheat. Note that each study is validated in exactly one of
the 5 k-folds so only one bias value can be calculated. See
Table A2 for study fold assignments.

Study n treatment pairs Bias

mead 1 522.2
davis2 4 385.1
swiftcurrent 15 285.6
mead2 18 223
pendleton2 45 131.6
russellranch LTRAS 9 83.79
pendleton1 24 -9.44
fort valley 18 -34.63
dalhart 1 -40.76
rodale 6 -109.5
mandan crop 18 -117.7
broadbalk 12 -268.6
morrow 1 -416
kbs 1 -620.9
Across all studies 173 0.98

Mean bias across all studies = 0.98 g C m−2

Is the absolute bias smaller than the PMU? Yes

9.16 ORG x All x SOC

Follows Model Requirements section 3.3.1, paragraph 5

Pooled measurement uncertainty (PMU) = 372.78 g C m−2

Table 36: Model bias per study (g C/m2) for ORG x all
annual CFGs. Note that each study is validated in exactly
one of the 5 k-folds so only one bias value can be calculated.
See Table A2 for study fold assignments.

Study n treatment pairs Bias

lethbridge manure 6 1537
davis2 2 633.9
ardec manure 2 540.5
mead 1 522.2
lethbridge2 4 340.6
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russellranch LTRAS 3 -84.2
pendleton1 21 -201.8
rodale 4 -446.4
broadbalk 12 -630.4
elansing2 3 -785.2
Across all studies 58 142.6

Mean bias across all studies = 142.64 g C m−2

Is the absolute bias smaller than the PMU? Yes

9.17 ORG x corn x SOC

This category is presented for context only to support the use of its data as part of Section
9.16 “ORG x All x SOC”.

Pooled measurement uncertainty (PMU) = 529.59 g C m−2

Table 37: Model bias per study (g C/m2) for ORG x corn.
Note that each study is validated in exactly one of the 5
k-folds so only one bias value can be calculated. See Table
A2 for study fold assignments.

Study n treatment pairs Bias

davis2 2 633.9
ardec manure 2 540.5
mead 1 522.2
russellranch LTRAS 3 -84.2
rodale 4 -446.4
elansing2 3 -785.2
Across all studies 15 63.45

Mean bias across all studies = 63.45 g C m−2

Is the absolute bias smaller than the PMU? Yes

9.18 ORG x soy x SOC

This category is presented for context only to support the use of its data as part of Section
9.16 “ORG x All x SOC”.

Pooled measurement uncertainty (PMU) = 529.59 g C m−2
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Table 38: Model bias per study (g C/m2) for ORG x soy.
Note that each study is validated in exactly one of the 5
k-folds so only one bias value can be calculated. See Table
A2 for study fold assignments.

Study n treatment pairs Bias

davis2 2 633.9
mead 1 522.2
rodale 4 -446.4
Across all studies 7 236.6

Mean bias across all studies = 236.55 g C m−2

Is the absolute bias smaller than the PMU? Yes

9.19 ORG x wheat x SOC

Pooled measurement uncertainty (PMU) = 372.78 g C m−2

Table 39: Model bias per study (g C/m2) for ORG x wheat.
Note that each study is validated in exactly one of the 5
k-folds so only one bias value can be calculated. See Table
A2 for study fold assignments.

Study n treatment pairs Bias

lethbridge manure 6 1537
davis2 2 633.9
mead 1 522.2
lethbridge2 4 340.6
russellranch LTRAS 3 -84.2
pendleton1 21 -201.8
rodale 4 -446.4
broadbalk 12 -630.4
Across all studies 53 208.9

Mean bias across all studies = 208.88 g C m−2

Is the absolute bias smaller than the PMU? Yes

94



10 Model prediction error

Follows Model Requirements, Section 3.5 Summary of Requirements (p20)

10.1 Description of calculation method

Model uncertainty bounds on the difference in SOC change between the practice and the baseline scenarios
were estimated using a Monte Carlo method as described in Gurung et al. (2020). In brief, the method takes
draws from the posterior predictive distribution of the calibrated model (see Section 4 “Model Calibration”).
The posterior predictive draws account for uncertainty in DayCent calibration parameters, as well as errors
in DayCent predictions due to variability across sites, across years within the same site, and unexplained
errors. After all simulations are complete, the 90% posterior prediction intervals are calculated by taking
the 5th and the 95th percentiles from the Monte Carlo simulations of the posterior predictive distribution,
providing the central interval of the posterior prediction (Gelman et al., 2014, p. 33). The performance
metric for acceptable model uncertainty is the percentage of measured observations from out-of-sample
validation data that fall within the 90% posterior prediction interval.

Similar to the bias calculation described in Section 9.1 “Calculating Bias”, for each treatment pair the
posterior prediction intervals are formed for the difference in SOC at the second time point. Coverage
rates are then calculated as the proportion of these posterior prediction intervals that contain the observed
difference in SOC at the second time point. As in Section 9.1 “Calculating Bias”, this is equivalent to
calculating coverage rates for emission reductions between the first and second time point, because modeled
SOC is constrained to be equal to observed SOC at the first time point, so the values at the first time
point cancel out when comparing two treatments.

Because the model is calibrated independently in each fold, and the folds have comparable predictor ranges
(i.e. models calibrated with data from 4 folds are not extrapolating far outside their training data to validate
the 5th hold-out fold), the average out-of-sample performance (i.e. bias and predictive interval coverage
rates) across folds is a valid estimate of performance when the model is applied to new sites within the
validated geographic, bioclimatic, and management domains outsides of the calibration dataset (Roberts
et al., 2017).

The Bayesian approach used here complies with the Model Requirements criterion that the model
uncertainty bounds of each prediction should account for cases “where there are few validation data” (Model
Requirements, Section 3.5) and that they “account for data variability” (Model Requirements, Section 3.5).
In particular, when data are more available and informative, the likelihood outweighs the prior and the
choice of prior has diminishing effects on the posterior density. However, when there is not enough data
or little information, the posterior tends to reproduce the prior. In this validation report we use weakly
informative independent priors (as recommended in Model Requirements section 3.5) that have a uniform
distribution defined by their lower and upper bounds (see Table A1 and Section 4.3 “Documentation of
model parameter sets” for details). These uniform distributions are wide enough to expand beyond what
is known or believed about the current understanding about the parameters’ range. For combinations of
PC and CFG with little validation data or with observations that are highly variable, the method provides
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a conservative estimate of prediction error and can be improved in the future when additional datasets of
higher quality are included.

10.2 Model prediction error across all categories

Figure 17: Model predictions versus measurements of SOC change in all practice changes and crop types,
faceted by fold. Error bars show 90% prediction intervals; intervals highlighted in yellow do not overlap
the observed value (see Table 40 for coverage rates).
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Figure 18: Scatterplot of model predictions versus measurements of SOC change in all practice changes
and crop types. Shaded area around solid line shows 95% CI around linear least-squares fit (does not
consider model or measurement error). Dashed line shows 1:1 relationship.
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Figure 19: Histogram of model residuals (predicted - observed) for change in SOC in all studies used for
model validation across all practices and crop types.

Table 40: Number of observed datapoints falling inside and outside of modeled 90% prediction intervals
for each fold of the calibration/validation process across all practices and crop types.

fold n n in n out % coverage

1 247 242 5 98
2 299 277 22 93
3 136 117 19 86
4 122 121 1 99
5 213 195 18 92
All folds 1017 952 65 94

We calculate the MSE and RMSE for each MCMC iteration, and report the mean ± the standard deviation
for each:

Mean squared error: 719393 ± 71026 (g C m−2)2; RMSE: 847 ± 41 g C m−2

Do 90% prediction intervals cover observed data 90% of the time? Yes
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10.3 CROP x corn x SOC

Figure 20: Model predictions versus measurements of SOC change in response to changed cropping practices
involving crops from the corn-type CFG, faceted by fold. Error bars show 90% prediction intervals; intervals
highlighted in yellow do not overlap the observed value (see Table 41 for coverage rates).

99



Figure 21: Scatterplot of model predictions versus measurements of SOC change in response to changed
cropping practices involving crops from the corn-type CFG. Shaded area around solid line shows 95% CI
around linear least-squares fit (does not consider model or measurement error). Dashed line shows 1:1
relationship.
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Figure 22: Histogram of model residuals (predicted - observed) for change in SOC in the studies used for
model validation evaluating changed, cropping practices involving crops from the corn-type CFG.

Table 41: Number of observed datapoints falling inside and outside of modeled 90% prediction intervals for
SOC predictions for each fold of the calibration/validation process for changed cropping practices involving
corn-type CFG.

fold n n in n out % coverage

1 63 63 0 100
2 66 65 1 98
3 41 41 0 100
4 4 4 0 100
5 36 28 8 78
All folds 210 201 9 96

Mean squared error: 438595 ± 74591; RMSE: 660 ± 56

Do 90% prediction intervals cover observed data 90% of the time? Yes
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10.4 CROP x cotton x SOC

Figure 23: Model predictions versus measurements of SOC change in response to changed cropping practices
involving crops from the cotton-type CFG, faceted by fold. Error bars show 90% prediction intervals;
intervals highlighted in yellow do not overlap the observed value (see Table 42 for coverage rates).
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Figure 24: Scatterplot of model predictions versus measurements of SOC change in response to changed
cropping practices involving crops from the cotton-type CFG. Shaded area around solid line shows 95%
CI around linear least-squares fit (does not consider model or measurement error). Dashed line shows 1:1
relationship.
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Figure 25: Histogram of model residuals (predicted - observed) for change in SOC in the studies used for
model validation evaluating changed, cropping practices involving crops from the cotton-type CFG.

Table 42: Number of observed datapoints falling inside and outside of modeled 90% prediction intervals for
SOC predictions for each fold of the calibration/validation process for changed cropping practices involving
cotton-type CFG.

fold n n in n out % coverage

1 10 10 0 100
2 60 58 2 97
3 42 28 14 67
4 50 50 0 100
All folds 162 146 16 90

Mean squared error: 215426 ± 37481; RMSE: 462 ± 40

Do 90% prediction intervals cover observed data 90% of the time? Yes
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10.5 CROP x soy x SOC

Figure 26: Model predictions versus measurements of SOC change in response to changed cropping practices
involving crops from the soy-type CFG, faceted by fold. Error bars show 90% prediction intervals; intervals
highlighted in yellow do not overlap the observed value (see Table 43 for coverage rates).
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Figure 27: Scatterplot of model predictions versus measurements of SOC change in response to changed
cropping practices involving crops from the soy-type CFG. Shaded area around solid line shows 95% CI
around linear least-squares fit (does not consider model or measurement error). Dashed line shows 1:1
relationship.
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Figure 28: Histogram of model residuals (predicted - observed) for change in SOC in the studies used for
model validation evaluating changed, cropping practices involving crops from the soy-type CFG.

Table 43: Number of observed datapoints falling inside and outside of modeled 90% prediction intervals for
SOC predictions for each fold of the calibration/validation process for changed cropping practices involving
soy-type CFG.

fold n n in n out % coverage

1 75 75 0 100
2 65 62 3 95
3 73 63 10 86
4 49 49 0 100
5 33 25 8 76
All folds 295 274 21 93

Mean squared error: 407857 ± 55371; RMSE: 637 ± 43

Do 90% prediction intervals cover observed data 90% of the time? Yes
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10.6 CROP x wheat x SOC

Figure 29: Model predictions versus measurements of SOC change in response to changed cropping practices
involving crops from the wheat-type CFG, faceted by fold. Error bars show 90% prediction intervals;
intervals highlighted in yellow do not overlap the observed value (see Table 44 for coverage rates).
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Figure 30: Scatterplot of model predictions versus measurements of SOC change in response to changed
cropping practices involving crops from the wheat-type CFG. Shaded area around solid line shows 95%
CI around linear least-squares fit (does not consider model or measurement error). Dashed line shows 1:1
relationship.
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Figure 31: Histogram of model residuals (predicted - observed) for change in SOC in the studies used for
model validation evaluating changed, cropping practices involving crops from the wheat-type CFG.

Table 44: Number of observed datapoints falling inside and outside of modeled 90% prediction intervals for
SOC predictions for each fold of the calibration/validation process for changed cropping practices involving
wheat-type CFG.

fold n n in n out % coverage

1 83 81 2 98
2 68 65 3 96
3 84 75 9 89
4 63 63 0 100
5 28 22 6 79
All folds 326 306 20 94

Mean squared error: 425356 ± 58137; RMSE: 651 ± 44

Do 90% prediction intervals cover observed data 90% of the time? Yes
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10.7 DISTURB x corn x SOC

Figure 32: Model predictions versus measurements of SOC change in response to changed tillage practices
involving crops from the corn-type CFG, faceted by fold. Error bars show 90% prediction intervals; intervals
highlighted in yellow do not overlap the observed value (see Table 45 for coverage rates).
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Figure 33: Scatterplot of model predictions versus measurements of SOC change in response to changed
tillage practices involving crops from the corn-type CFG. Shaded area around solid line shows 95% CI
around linear least-squares fit (does not consider model or measurement error). Dashed line shows 1:1
relationship.
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Figure 34: Histogram of model residuals (predicted - observed) for change in SOC in the studies used for
model validation evaluating changed, tillage practices involving crops from the corn-type CFG.

Table 45: Number of observed datapoints falling inside and outside of modeled 90% prediction intervals for
SOC predictions for each fold of the calibration/validation process for changed tillage practices involving
corn-type CFG.

fold n n in n out % coverage

1 6 6 0 100
2 152 139 13 91
3 14 13 1 93
4 18 18 0 100
5 35 29 6 83
All folds 225 205 20 91

Mean squared error: 1112412 ± 158687; RMSE: 1052 ± 75

Do 90% prediction intervals cover observed data 90% of the time? Yes
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10.8 DISTURB x cotton x SOC

Figure 35: Model predictions versus measurements of SOC change in response to changed tillage practices
involving crops from the cotton-type CFG, faceted by fold. Error bars show 90% prediction intervals;
intervals highlighted in yellow do not overlap the observed value (see Table 46 for coverage rates).

114



Figure 36: Scatterplot of model predictions versus measurements of SOC change in response to changed
tillage practices involving crops from the cotton-type CFG. Shaded area around solid line shows 95% CI
around linear least-squares fit (does not consider model or measurement error). Dashed line shows 1:1
relationship.
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Figure 37: Histogram of model residuals (predicted - observed) for change in SOC in the studies used for
model validation evaluating changed, tillage practices involving crops from the cotton-type CFG.

Table 46: Number of observed datapoints falling inside and outside of modeled 90% prediction intervals for
SOC predictions for each fold of the calibration/validation process for changed tillage practices involving
cotton-type CFG.

fold n n in n out % coverage

1 7 7 0 100
2 42 41 1 98
All folds 49 48 1 98

Mean squared error: 144049 ± 37990; RMSE: 376 ± 49

Do 90% prediction intervals cover observed data 90% of the time? Yes
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10.9 DISTURB x soy x SOC

Figure 38: Model predictions versus measurements of SOC change in response to changed tillage practices
involving crops from the soy-type CFG, faceted by fold. Error bars show 90% prediction intervals; intervals
highlighted in yellow do not overlap the observed value (see Table 47 for coverage rates).
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Figure 39: Scatterplot of model predictions versus measurements of SOC change in response to changed
tillage practices involving crops from the soy-type CFG. Shaded area around solid line shows 95% CI
around linear least-squares fit (does not consider model or measurement error). Dashed line shows 1:1
relationship.

118



Figure 40: Histogram of model residuals (predicted - observed) for change in SOC in the studies used for
model validation evaluating changed, tillage practices involving crops from the soy-type CFG.

Table 47: Number of observed datapoints falling inside and outside of modeled 90% prediction intervals for
SOC predictions for each fold of the calibration/validation process for changed tillage practices involving
soy-type CFG.

fold n n in n out % coverage

1 4 4 0 100
2 44 43 1 98
5 18 16 2 89
All folds 66 63 3 95

Mean squared error: 456619 ± 109703; RMSE: 671 ± 79

Do 90% prediction intervals cover observed data 90% of the time? Yes
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10.10 DISTURB x wheat x SOC

Figure 41: Model predictions versus measurements of SOC change in response to changed tillage practices
involving crops from the wheat-type CFG, faceted by fold. Error bars show 90% prediction intervals;
intervals highlighted in yellow do not overlap the observed value (see Table 48 for coverage rates).

120



Figure 42: Scatterplot of model predictions versus measurements of SOC change in response to changed
tillage practices involving crops from the wheat-type CFG. Shaded area around solid line shows 95% CI
around linear least-squares fit (does not consider model or measurement error). Dashed line shows 1:1
relationship.
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Figure 43: Histogram of model residuals (predicted - observed) for change in SOC in the studies used for
model validation evaluating changed, tillage practices involving crops from the wheat-type CFG.

Table 48: Number of observed datapoints falling inside and outside of modeled 90% prediction intervals for
SOC predictions for each fold of the calibration/validation process for changed tillage practices involving
wheat-type CFG.

fold n n in n out % coverage

1 13 13 0 100
2 31 29 2 94
3 1 0 1 0
5 42 42 0 100
All folds 87 84 3 97

Mean squared error: 423539 ± 91906; RMSE: 647 ± 70

Do 90% prediction intervals cover observed data 90% of the time? Yes
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10.11 NFERT x corn x SOC

Figure 44: Model predictions versus measurements of SOC change in response to changed nitrogen practices
involving crops from the corn-type CFG, faceted by fold. Error bars show 90% prediction intervals; intervals
highlighted in yellow do not overlap the observed value (see Table 49 for coverage rates).
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Figure 45: Scatterplot of model predictions versus measurements of SOC change in response to changed
nitrogen practices involving crops from the corn-type CFG. Shaded area around solid line shows 95% CI
around linear least-squares fit (does not consider model or measurement error). Dashed line shows 1:1
relationship.
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Figure 46: Histogram of model residuals (predicted - observed) for change in SOC in the studies used for
model validation evaluating changed, nitrogen practices involving crops from the corn-type CFG.

Table 49: Number of observed datapoints falling inside and outside of modeled 90% prediction intervals for
SOC predictions for each fold of the calibration/validation process for changed nitrogen practices involving
corn-type CFG.

fold n n in n out % coverage

1 56 56 0 100
2 49 48 1 98
3 34 32 2 94
4 4 3 1 75
5 23 17 6 74
All folds 166 156 10 94

Mean squared error: 587484 ± 99368; RMSE: 764 ± 64

Do 90% prediction intervals cover observed data 90% of the time? Yes
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10.12 NFERT x soy x SOC

Figure 47: Model predictions versus measurements of SOC change in response to changed nitrogen practices
involving crops from the soy-type CFG, faceted by fold. Error bars show 90% prediction intervals; intervals
highlighted in yellow do not overlap the observed value (see Table 50 for coverage rates).
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Figure 48: Scatterplot of model predictions versus measurements of SOC change in response to changed
nitrogen practices involving crops from the soy-type CFG. Shaded area around solid line shows 95% CI
around linear least-squares fit (does not consider model or measurement error). Dashed line shows 1:1
relationship.
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Figure 49: Histogram of model residuals (predicted - observed) for change in SOC in the studies used for
model validation evaluating changed, nitrogen practices involving crops from the soy-type CFG.

Table 50: Number of observed datapoints falling inside and outside of modeled 90% prediction intervals for
SOC predictions for each fold of the calibration/validation process for changed nitrogen practices involving
soy-type CFG.

fold n n in n out % coverage

1 45 45 0 100
2 18 18 0 100
3 8 8 0 100
4 1 1 0 100
5 5 3 2 60
All folds 77 75 2 97

Mean squared error: 487636 ± 132496; RMSE: 692 ± 93

Do 90% prediction intervals cover observed data 90% of the time? Yes
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10.13 NFERT x wheat x SOC

Figure 50: Model predictions versus measurements of SOC change in response to changed nitrogen practices
involving crops from the wheat-type CFG, faceted by fold. Error bars show 90% prediction intervals;
intervals highlighted in yellow do not overlap the observed value (see Table 51 for coverage rates).
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Figure 51: Scatterplot of model predictions versus measurements of SOC change in response to changed
nitrogen practices involving crops from the wheat-type CFG. Shaded area around solid line shows 95%
CI around linear least-squares fit (does not consider model or measurement error). Dashed line shows 1:1
relationship.
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Figure 52: Histogram of model residuals (predicted - observed) for change in SOC in the studies used for
model validation evaluating changed, nitrogen practices involving crops from the wheat-type CFG.

Table 51: Number of observed datapoints falling inside and outside of modeled 90% prediction intervals for
SOC predictions for each fold of the calibration/validation process for changed nitrogen practices involving
wheat-type CFG.

fold n n in n out % coverage

1 51 48 3 94
2 27 26 1 96
3 8 8 0 100
4 13 13 0 100
5 74 72 2 97
All folds 173 167 6 97

Mean squared error: 601354 ± 141192; RMSE: 771 ± 86

Do 90% prediction intervals cover observed data 90% of the time? Yes
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10.14 ORG x All x SOC

Follows Model Requirements section 3.3.1, paragraph 5

The uncertainty intervals presented in this section are those computed directly from the raw model
calibration. In Appendix E we analyze how these coverage rates may vary over time and find evidence
that these intervals may be too narrow (anti-conservative) for the first few years of ORG practice changes
only. To ensure that the model uncertainty is estimated conservatively for all durations, we will apply an
additional variance inflation factor of 1.36 (Appendix F) when using the model for crediting of organic
amendment practices; see Section 13 “Restrictions on application of model” for details.

Figure 53: Model predictions versus measurements of SOC change in response to changed organic
amendment practices involving crops from the All-type CFG, faceted by fold. Error bars show 90%
prediction intervals; intervals highlighted in yellow do not overlap the observed value (see Table 52 for
coverage rates).
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Figure 54: Scatterplot of model predictions versus measurements of SOC change in response to changed
organic amendment practices involving crops from the All-type CFG. Shaded area around solid line shows
95% CI around linear least-squares fit (does not consider model or measurement error). Dashed line shows
1:1 relationship.
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Figure 55: Histogram of model residuals (predicted - observed) for change in SOC in the studies used for
model validation evaluating changed, organic amendment practices involving crops from the All-type CFG.

Table 52: Number of observed datapoints falling inside and outside of modeled 90% prediction intervals
for SOC predictions for each fold of the calibration/validation process for changed organic amendment
practices involving any annual CFG.

fold n n in n out % coverage

1 2 2 0 100
2 9 6 3 67
3 4 4 0 100
4 20 19 1 95
5 23 21 2 91
All folds 58 52 6 90

Mean squared error: 2364456 ± 859092; RMSE: 1515 ± 264

Do 90% prediction intervals cover observed data 90% of the time? Yes
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10.15 ORG x corn x SOC

This category is presented for context only to support the use of its data as part of Section
10.14 “ORG x All x SOC”.

Figure 56: Model predictions versus measurements of SOC change in response to changed organic
amendment practices involving crops from the corn-type CFG, faceted by fold. Error bars show 90%
prediction intervals; intervals highlighted in yellow do not overlap the observed value (see Table 53 for
coverage rates).
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Figure 57: Scatterplot of model predictions versus measurements of SOC change in response to changed
organic amendment practices involving crops from the corn-type CFG. Shaded area around solid line shows
95% CI around linear least-squares fit (does not consider model or measurement error). Dashed line shows
1:1 relationship.
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Figure 58: Histogram of model residuals (predicted - observed) for change in SOC in the studies used
for model validation evaluating changed, organic amendment practices involving crops from the corn-type
CFG.

Table 53: Number of observed datapoints falling inside and outside of modeled 90% prediction intervals
for SOC predictions for each fold of the calibration/validation process for changed organic amendment
practices involving corn-type CFG.

fold n n in n out % coverage

1 2 2 0 100
2 3 3 0 100
3 4 4 0 100
4 4 3 1 75
5 2 0 2 0
All folds 15 12 3 80

Mean squared error: 740286 ± 293775; RMSE: 844 ± 167

Do 90% prediction intervals cover observed data 90% of the time? No
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10.16 ORG x soy x SOC

This category is presented for context only to support the use of its data as part of Section
10.14 “ORG x All x SOC”.

Figure 59: Model predictions versus measurements of SOC change in response to changed organic
amendment practices involving crops from the soy-type CFG, faceted by fold. Error bars show 90%
prediction intervals; intervals highlighted in yellow do not overlap the observed value (see Table 54 for
coverage rates).
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Figure 60: Scatterplot of model predictions versus measurements of SOC change in response to changed
organic amendment practices involving crops from the soy-type CFG. Shaded area around solid line shows
95% CI around linear least-squares fit (does not consider model or measurement error). Dashed line shows
1:1 relationship.
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Figure 61: Histogram of model residuals (predicted - observed) for change in SOC in the studies used for
model validation evaluating changed, organic amendment practices involving crops from the soy-type CFG.

Table 54: Number of observed datapoints falling inside and outside of modeled 90% prediction intervals
for SOC predictions for each fold of the calibration/validation process for changed organic amendment
practices involving soy-type CFG.

fold n n in n out % coverage

3 4 4 0 100
4 1 1 0 100
5 2 0 2 0
All folds 7 5 2 71

Mean squared error: 843553 ± 475809; RMSE: 884 ± 250

Do 90% prediction intervals cover observed data 90% of the time? No
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10.17 ORG x wheat x SOC

Figure 62: Model predictions versus measurements of SOC change in response to changed organic
amendment practices involving crops from the wheat-type CFG, faceted by fold. Error bars show 90%
prediction intervals; intervals highlighted in yellow do not overlap the observed value (see Table 55 for
coverage rates).
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Figure 63: Scatterplot of model predictions versus measurements of SOC change in response to changed
organic amendment practices involving crops from the wheat-type CFG. Shaded area around solid line
shows 95% CI around linear least-squares fit (does not consider model or measurement error). Dashed line
shows 1:1 relationship.
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Figure 64: Histogram of model residuals (predicted - observed) for change in SOC in the studies used for
model validation evaluating changed, organic amendment practices involving crops from the wheat-type
CFG.

Table 55: Number of observed datapoints falling inside and outside of modeled 90% prediction intervals
for SOC predictions for each fold of the calibration/validation process for changed organic amendment
practices involving wheat-type CFG.

fold n n in n out % coverage

2 9 6 3 67
3 4 4 0 100
4 17 17 0 100
5 23 21 2 91
All folds 53 48 5 91

Mean squared error: 2503166 ± 938532; RMSE: 1557 ± 281

Do 90% prediction intervals cover observed data 90% of the time? Yes
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11 Model validation outputs for use in SEP uncertainty calculations

Follows Model Requirements, Section 3.5

When the model is used for crediting in project CAR1459 according to SEP requirements, an uncertainty
deduction will be computed using the methods described in SEP Appendix D, using the same model
outputs used in this validation report. At the time of writing this report, a revision to SEP Appendix D
was under consideration by CAR, so we present here an outline of what values from this report will be
used under both the original and the proposed SEP requirements.

11.1 Original SEP

SEP v1.0 assumes an analytical approach to computing model prediction errors. When computing
uncertainty deductions using this approach, the only quantity needed from the validation data will be
s2model,∆G (SEP Equation D.5), which can be computed as the mean squared error of out-of-sample model
predictions from the cross-validation as computed across all folds, PCs and CFGs. This is the same MSE
reported in Section 10.2: Mean squared error: 719393 ± 71026 (g C m−2)2; RMSE: 847 ± 41 g C m−2 .

11.2 Revised SEP

The revision of SEP Appendix D under consideration by CAR for use in Project CAR1459 (details in
Supporting Document Appendix_D_revision_v4.docx) introduces more complete guidelines for Monte
Carlo approaches to uncertainty estimation and allow projects to use either of two approaches: analytical
or Monte Carlo. These two approaches are summarized below.

11.2.1 SEP Appendix D.1: Analytical approach

The analytical approach from SEP v1.0 is retained as SEP Appendix D.1, with s2model,∆G retained as SEP
Equation D.2. If reporting under this approach, we would proceed as described in Section 11.1 “Original
SEP” above.

11.2.2 SEP Appendix D.2: Monte Carlo approach

When using a Monte Carlo approach per revised SEP Appendix D.2 (Supporting Document
Appendix_D_revision_v4.docx), model error for predicting SOC stocks in baseline and project scenarios
will be computed on the natural log scale by sampling from the posterior distributions of the parameters
that were adjusted during cross-validation and from variance parameters capturing prediction error (both
summarized in Table A3, Appendix A). These SOC stock prediction errors will then be propagated to obtain
model prediction error for emission reductions by following the procedures described in SEP Appendix D.2.
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This is the same error propagation approach already used to demonstrate adequate uncertainty coverage
in Section 10 “Model prediction error” of this report. When running the model for crediting, the ensemble
of simulations for a given datapoint will consist of 176 DayCent-CR simulations, which are then combined
with draws from the random effect and residual variance distributions to give one Monte Carlo prediction
for each unique combination of parameter states in the stored posterior. The variance inflation factor
described in Appendix F will also be applied to points with an ORG practice change. These are then
summarized to quantify uncertainty in the estimate of total emission reductions for the project.

12 Evaluation of final parameter set

After evaluating the model fitting procedure via 5-fold cross-validation, the final parameter set to be
used for crediting was generated by applying the Bayesian calibration procedure to the entire dataset of
observations with none held out. To obtain in-sample-predictions, we took random draws of the random
site and site-by-year random intercepts, which is aligned with our approach for making out-of-sample
predictions; we did not use the best unbiased linear predictors (BLUPs) for the random intercepts.

The resulting posterior distributions from this final step (Table A1) are very similar to the distributions
obtained during cross-validation (Figure 65; Tables 56, 57, and 58) and are saved for use when running the
model for credits. We report here on the performance of the model when fitting the validation data using
the final parameter set, but we emphasize that this is an evaluation against the training data and may not be
representative of model performance at other sites; in particular the RMSE of the final parameter set should
not be used as an estimate of model prediction error during crediting. For an estimate of expected model
performance at newly observed sites, the metrics computed from out-of-sample data during cross-validation
are the correct metrics to use, and no other sections of this report are derived from models run with the
final parameter set.

12.1 Model bias across all PCs and CFGs

• During cross-validation: Mean bias across all studies and PC x CFG combinations: -3.87 g C m−2

• With final parameter set: Mean bias across all studies and PC x CFG combinations: 4.95 g C m−2

12.2 MSE and RMSE across all PCs and CFGs

• During cross-validation: Mean squared error: 719393 ± 71026 (g C m−2)2; RMSE: 847 ± 41 g C m−2

• With final parameter set: Mean squared error: 710973 ± 78614 (g C m−2)2; RMSE: 842 ± 46 g C
m−2
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12.3 Model fit

Figure 65: Model predictions versus measurements of SOC change in all practice changes and crop types,
obtained during cross-validation (left) and with final parameter set (right). Error bars show 90% prediction
intervals; intervals highlighted in yellow do not overlap the observed value.
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Figure 66: Histogram of model residuals (predicted - observed) for change in SOC in all studies used for
model validation across all practices and crop types, obtained during cross-validation (red) and with final
parameter set (blue).
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Table 56: Comparison of model bias in each PC x CFG category during cross-validation and with the final
parameter set.

PC CFG PMU n obs n sites bias k-fold bias final
params

final bias
smaller?

ORG soy 529.6 7 3 236.6 250.7 No
ORG wheat 372.8 53 8 208.9 295.1 No
ORG All 372.8 58 10 142.6 217.2 No
ORG corn 529.6 15 6 63.45 71.6 No
CROP corn 399.2 210 17 8.79 7.42 Yes
NFERT wheat 306.1 173 14 0.98 42.39 No
CROP soy 399.2 295 20 -25.59 -29.04 Yes
CROP wheat 342.4 326 23 -35.06 -34.4 No
NFERT corn 868.6 166 15 -44.69 -38.99 No
CROP cotton 240.2 162 6 -48.93 -46.03 No
DISTURB corn 656.8 225 13 -57.95 -68.11 Yes
NFERT soy 366.8 77 7 -60.05 -42.84 No
DISTURB wheat 378.6 87 11 -94.13 -95.82 Yes
DISTURB soy 467.5 66 9 -139.1 -139.4 Yes
DISTURB cotton 209.3 49 4 -180.4 -182 Yes

Table 57: Comparison of MSE and RMSE in each PC x CFG category during cross-validation and with
the final parameter set.

PC CFG MSE k-fold RMSE
k-fold

MSE final params RMSE final
params

final RMSE
smaller?

Organic wheat 2503166± 938532 1557± 281 2463340± 1070169 1538± 315 Yes
Organic All 2364456± 859092 1515± 264 2321217± 979241 1494± 297 Yes
Tillage corn 1112412± 158687 1052± 75 1127319± 166440 1059± 77 No
Organic soy 843553± 475809 884± 250 922952± 547436 922± 270 No
Organic corn 740286± 293775 844± 167 752258± 309888 850± 174 No
N wheat 601354± 141192 771± 86 630835± 196503 786± 112 No
N corn 587484± 99368 764± 64 572063± 95010 754± 62 Yes
N soy 487636± 132496 692± 93 450418± 124128 665± 91 Yes
Tillage soy 456619± 109703 671± 79 455322± 109109 670± 79 Yes
Cropping corn 438595± 74591 660± 56 440885± 74628 662± 56 No
Cropping wheat 425356± 58137 651± 44 430305± 57077 655± 43 No
Tillage wheat 423539± 91906 647± 70 406465± 85538 634± 66 Yes
Cropping soy 407857± 55371 637± 43 409304± 55233 638± 43 No
Cropping cotton 215426± 37481 462± 40 218133± 40525 465± 43 No
Tillage cotton 144049± 37990 376± 49 134505± 33781 364± 45 Yes
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Table 58: Comparison of posterior 90% prediction interval coverage in each PC x CFG category during
cross-validation and with the final parameter set.

PC CFG n k-fold % coverage
k-fold

n final params % coverage
final params

DISTURB cotton 48 in, 1 out 98 48 in, 1 out 98
DISTURB wheat 84 in, 3 out 97 83 in, 4 out 95
NFERT soy 75 in, 2 out 97 75 in, 2 out 97
NFERT wheat 167 in, 6 out 97 167 in, 6 out 97
CROP corn 201 in, 9 out 96 202 in, 8 out 96
DISTURB soy 63 in, 3 out 95 63 in, 3 out 95
CROP wheat 306 in, 20 out 94 306 in, 20 out 94
NFERT corn 156 in, 10 out 94 157 in, 9 out 95
All All 952 in, 65 out 94 955 in, 62 out 94
CROP soy 274 in, 21 out 93 275 in, 20 out 93
DISTURB corn 205 in, 20 out 91 206 in, 19 out 92
ORG wheat 48 in, 5 out 91 49 in, 4 out 92
CROP cotton 146 in, 16 out 90 146 in, 16 out 90
ORG All 52 in, 6 out 90 53 in, 5 out 91
ORG corn 12 in, 3 out 80 12 in, 3 out 80
ORG soy 5 in, 2 out 71 5 in, 2 out 71

13 Restrictions on application of model

In the previous validation report, we observed that the model underestimated uncertainty for very large
changes in SOC, and therefore restricted the valid range of the model to changes smaller than 5000 g C
m-2. In this report, uncertainty coverage appears adequate for the full range of validation data, so this
restriction is no longer needed for DayCent-CR Version 1.0.2.

The validation of model uncertainty for ORG x All x SOC (Section 10.14) passes the 90% coverage threshold
specified by the Model Requirements, but our additional assessments of the heterogeneous variance
approach showed evidence that the coverage rate may be time-dependent in this category (Appendix E).
To ensure that model uncertainty is estimated conservatively for ORG practice changes of short duration,
we apply an empirical correction for the residual variance (Appendix F) sufficient to observe coverage of
at least 90% across 3, 5, and 10-year durations as well as across the entire ORG x All dataset. Therefore
we consider the model validated for ORG x All x SOC only when applied with a variance
inflation factor that multiplies the calibrated residual variance by 1.36.
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