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Acronyms and Abbreviations 
API application programming interface 

C carbon 

C3A C3 annual crop functional group 

C3AN C3 annual N-fixing crop functional group 

C3PN C3 perennial N-fixing crop functional group 

C3S C3 annual shrub crop functional group 

C4A C4 annual crop functional group 

CAR Climate Action Reserve 

CFG crop functional group 

CH4 methane 

CO2 carbon dioxide 

CRNF controlled release nitrogen fertilizer 

CROP cropping practices, planting and harvesting practice category 

CTIC Conservation Technology Information Center 

CV coefficient of variance 

DISTURB  soil disturbance and/or residue management practice category 

DREAM DiffeRential Evolution Adaptive Metropolis 

EENF enhanced efficiency nitrogen fertilizer 

ERS-ARMS Economic Research Service Agricultural Resource Management Survey 

GHG greenhouse gas 

GSA global sensitivity analysis 

IPCC Intergovernmental Panel on Climate Change 

LRR Land Resource Region 

MCMC Markov Chain Monte Carlo 

Model Requirements Requirements and Guidance for Model Calibration, Validation, Uncertainty, and 
Verification for Soil Enrichment Projects, Version 1.1a, accessed on 17 Oct 2023 

N mineral nitrogen 

N2 elemental nitrogen 

N2O nitrous oxide 
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NASS National Agricultural Statistics Service 

NFERT  inorganic nitrogen fertilizer application practice category 

NI nitrification inhibitors  

NOx nitrogen oxides 

OAT One At a Time 

ORG organic amendments application practice category 

PC practice category 

PMU pooled measurement uncertainty 

REML restricted maximum likelihood 

RMSE root mean square error 

SEP Soil Enrichment Protocol 

SOC soil organic carbon 

SD standard deviation 

SE standard error 

SWAT Soil and Water Assessment Tool 

USDA United States Department of Agriculture 
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1 Report type 
1.1 Report type 
Type 1 (Project-specific, for project CAR1459, Indigo U.S. Project No. 1 [CAR1459]) 

1.2 Climate Action Reserve Soil Enrichment Protocol version 
Version 1.1, accessed on 17 October 2023 

1.3 Climate Action Reserve Soil Enrichment Protocol model requirements version 
Requirements and Guidance for Model Calibration, Validation, Uncertainty, and Verification for Soil 
Enrichment Projects, Version 1.1a, accessed on 17 Oct 2023 (referred to hereafter as the “Model 
Requirements”) 

1.4 Model version 
DayCent-CR Version 1.1.0. 

This model version consists of the following components (collectively the model files). Each of these 
components are version-controlled independently from each other, but only the following component 
versions shall be considered the validated DayCent-CR Version 1.1.0: 

1. Version 1.1.0 of the DayCent-CR model executable, compiled from revision 32aa16b of Indigo
Ag’s DayCent code repository.

2. Version 3.0 of the DayCent-CR model parameters, with fixed components from revision a7f2701
of Indigo Ag’s DayCent validation data repository and probability distributions of calibrated
components from revision 8326da36d5of Indigo Ag’s cross-validation pipeline.

The code lineage was originally derived from the branch of DayCent maintained by the National 
Greenhouse Gas Inventory team and also used for the COMET-Farm system and has been modified since 
the previous validation report as described in Section 1.6. 

During model simulations for project CAR1459, Indigo submits inputs to the model using the DayCent-
CR application programming interface (API). This API was not used during calibration or validation and 
is not included in the model version described here. The validation described here should be applicable to 
any result obtained from DayCent-CR Version 1.1.0 whether it is run directly or accessed through any 
technically compatible version of the DayCent-CR API. 

1.5 Version confirmation materials 
The materials included in Table 1 have been provided for use by the reviewer of this report and project 
verifiers for CAR1459. All materials are version-tracked in their own repository separate from the model 
API, which may have independent version updates that do not change the validated model filesTable 1. 
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Table 1. Materials provided for review. 
To access Appendices and Validation Supporting Files for academic research purposes, Indigo Ag should be 
contacted directly. 

Material Description 
Supporting Materials 1 Documentation of validation and calibration datasets for each Crop 

Functional Group x Practice Change x Emission Source combination 
Supporting Materials 2 Analysis of model performance for each Crop Functional Group x Practice 

Change x Emission Source combination 
Appendix A Documentation of calibrated parameter sets 
Appendix B Declaration of validated practice changes 
Appendix C MCMC sampler diagnostics 
Appendix D Comparison of thinned vs full posteriors of final calibration 
Appendix E Confidence interval width and coverage rates as a function of time 
Appendix F Proposal for disambiguating pooled measurement uncertainty (PMU) 
DayCentCR_1.1.0_validat
ion_supporting_files.zip 

Copies of validation datasets and model run files used in the simulations for 
this report (in their initial state prior to model calibration), as well as code 
for running calibration and analyzing. See README. 

1.6 Changes from previous model version 
DayCent-CR versions 1.0 and 1.0.2 have been previously validated and approved for crediting of soil 
organic carbon (SOC) in CAR1459 (Indigo Ag, 2022). For the current validation of DayCent-CR Version 
1.1.0, the following changes from version 1.0.2 have been made: 

1. New algorithms have been added to simulate the effects of nitrification inhibitors (NIs) and
controlled release nitrogen fertilizers (CRNFs), collectively known as enhanced efficiency
nitrogen fertilizers (EENFs). Further information is provided in Section 2.

2. Daily modeled nitrous oxide (N2O) emissions were capped to curtail the tendency of the existing
denitrification algorithm to simulate unrealistically high short-term fluxes. Further information is
provided in Section 2.

3. Simulation of nitrous oxide N2O is calibrated and validated. See Section 3 for more information.
4. New sites have been added to the validation dataset, further expanding the domain of

geographies, crop types, and practices covered by this validation. In particular, the new data
include enough observations to validate select practice categories (PCs) for SOC changes in the
C3 perennial N-fixing crop functional group (CFG) and select PCs for various CFGs for N2O. See
Section 4 for details.

5. Parameters selected by global sensitivity analysis for SOC did not change from the previous
report, here one at a time sensitivity analysis was used to select additional parameters for joint
calibration with SOC pool and N2O flux observations as described in Section 3.

6. While using the same algorithms for calibration, the majority of implementation has been
migrated from R to Python. In particular, in the previous report we used the implementation of
the DREAM algorithm in the dream package for R (Vrugt et al., 2009), but in the present report
we used the implementation of the DREAM algorithm in the SPOTPY packge for Python
(Houska et al., 2015).

7. In the previous validation report (i.e., Indigo Ag, 2022) pooled measurement uncertainty (PMU)
was calculated for each PC x CFG x Emission Source category; in this report, we calculated a
‘global’ PMU for each Emission Source category to reduce sampling error as described in Section
7.
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1.7 Project team 
Calibration, validation, and running of DayCent-CR for this project were performed by Indigo Ag, which 
is also the project developer of CAR1459. Two external collaborators assisted Indigo staff with 
interpretation of the literature and development of input files: Stephen Williams (retired) and Dr. Yao 
Zhang (Colorado State University). As required in Section 5 of the Model Requirements, Indigo Ag has 
the requisite expertise to calibrate and validate DayCent-CR for model performance and uncertainty. A 
summary of the project team’s modeling qualifications is provided in Table 2.  

Table 2. Project team modeling qualifications. 

Team member Degree 

Modeling expertise (years of experience) 

DayCent 
Environmental 

mechanistic 
modeling 

Statistical 
modeling 

Chris Black Ph.D. 11 14 11 
Hamze Dokoohaki Ph.D. <1 12 12 
Jeff Kent Ph.D. 14 14 
David LeBauer Ph.D. <1 14 20 
Michelle Schmidt M.S. <1 10 10 
Brian Segal Ph.D. 2 2 14 
Stephen Williams (contractor) M.S. 11 24 
Yao Zhang  
(Colorado State University) 

Ph.D. 13 10 8 



CAR1459 DayCent-CR v1.1.0 Model Validation Report 4 

2 Model description 
This report describes the validation of DayCent-CR version 1.1.0 for use in modeling changes in soil 
carbon and N2O for crediting as part of CAR1459.  

DayCent-CR is a process-based ecosystem biogeochemical model that simulates carbon and nitrogen 
dynamics in cropland and grassland systems and has been tailored for compliance with the requirements 
of the Climate Action Reserve Soil Enrichment Protocol (CAR SEP). The DayCent model (e.g., see 
Parton et al., 2001; Del Grosso et al., 2006; Del Grosso et al., 2012; Zhang et al., 2018) has been used 
extensively for more than two decades by researchers worldwide to simulate soil organic matter dynamics 
and soil trace gas N2O and methane (CH4) fluxes in a variety of managed ecosystems (cropland, 
grassland, savanna, forest). The model employs a daily time step and simulates plant processes (e.g., 
photosynthesis, phenology, dry matter allocation, senescence), soil water balance, soil temperature, soil 
organic matter dynamics for two plant litter and three soil organic matter pools, as well as mineral 
nitrogen transformations including elemental nitrogen (N2), N2O and nitrogen oxides (NOx) emissions and 
CH4 oxidation and emissions from soil. The model is used to estimate net carbon dioxide (CO2), N2O, and 
CH4 emissions from soils in the U.S. national greenhouse gas (GHG) inventory submitted by the U.S. 
Environmental Protection Agency to the United Nations Framework Convention on Climate Change. The 
DayCent model is included within the COMET-Farm platform that implements United States Department 
of Agriculture’s (USDA) entity-scale GHG inventory methods (Powers et al., 2014) and the model is 
implemented as part of the CAR’s protocol for avoided conversion of grassland 
(http://www.climateactionreserve.org/how/protocols/grassland/). 

The version of the model validated in this report is based on the latest version of the model developed to 
simulate soil biogeochemistry to 30-centimeter (cm) soil depth, with additional improvements to several 
soil and plant processes as documented in Gurung et al. (2020) and Mathers et al. (2023). The current 
version of the model (version 1.1.0) is structurally the same as documented in Mathers et al. (2023), with 
the following exceptions: 

- New algorithms were added to simulate two types of EENFs: NIs and CRNFs. The effects of
these products on N2O emissions from croplands are quantified in a meta-analysis by Thapa et al.
(2016).

o NIs are a class of EENF products that are blended with nitrogen fertilizers and act in the
soil to reduce rates of nitrification, resulting in reduced N2O losses. The new algorithm
represents these effects using a daily reduction factor on gross nitrification which is set at
a value between 0 and 1 on the date of fertilizer application and increases toward 1 (and
thus no effect) as a function of cumulative exposure to heat and moisture. The
mathematical specification used is presented in Gurung et al. (2021).

o CRNFs are a class of EENF products which typically use a semi-permeable coating to
impede diffusion of nitrogen into the soil, resulting in a gradual release that is better
matched to crop demand and reduced losses as N2O. The new algorithm represents CRNF
products by adding only small fractions of the total applied fertilizer to the simulated
nitrogen pools, with the speed of release driven by cumulative exposure to heat and
moisture. The mathematical specification used is presented in Gurung et al. (2021).

- Daily N2O fluxes from denitrification were capped to maintain realistic rates of N2O emission
under peak conditions. While N2O measurements commonly show brief periods of very high
emissions, the empirical approximations used in DayCent’s trace gas submodel occasionally
predict fluxes that are not supported by measurements. Testing a simple cap on extreme simulated
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pulse emissions resulted in reduced bias and root-mean-square error of N2O predictions. While 
not published, a maximum daily flux was developed based on the 99th percentile of over seventy 
thousand GraceNet N2O measurements representing 151 treatments across 18 sites (USDA, 
2015). This cap is applied to the daily flux from denitrification, which represents most of the 
N2O flux simulated by DayCent. Figure 1 shows total N2O fluxes simulated with and without the 
daily cap active in the model, using default (uncalibrated) values for model parameters. 

Figure 1. Total simulated N2O fluxes from use of the capped (blue dots) and uncapped (red dots) model versions. 

The model has been adapted to use initial estimates of SOC based on lab measurements of field sampled 
soils (see Section 3.2 for details) and soil organic nitrogen pools based on the modeled C:N ratios of each 
SOC pool as described in Mathers et al. (2023). This model is referred to as “DayCent-CR”. This allows 
the model to operate in compliance with the CAR SEP Section 5, using the required direct measurements 
of SOC to initiate with-project and baseline simulations. In addition, the parameterization and validation 
of the model, using Bayesian techniques described herein, has been tailored specifically to the cropping 
domains defined in this report, and post-simulation quality checks have been implemented to ensure 
model applicability across axes not considered by the validation domain (see Section 11). 

For clarity, here is an overview of key carbon and nitrogen quantities and their use in this report and in 
crediting. 

1. SOC Pool Size or SOC Stock is the measurement of the mass of carbon in the top 30 cm of soil.
This quantity is used to initialize the model and, with repeated measurements, to calculate its
change over time.

2. SOC Temporal Stock Change is the change in SOC Stock over time. This quantity is used in
model calibration.
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3. SOC Temporal Stock Treatment Difference refers to the difference in SOC Temporal Stock
Change between a practice change treatment and its baseline control. This quantity is used in
validation.

4. Soil Organic Nitrogen is analogous to the SOC Pool Size and is measured and modeled but not
directly used in calibration, validation like SOC. It is only used as a check on model performance,
and to exclude sites with extreme values of this quantity.

5. Seasonal N2O Flux is the interpolated and integrated sum of instantaneous N2O fluxes over time,
typically a growing season. This quantity is used alongside SOC Temporal Stock Change for
calibration.

6. N2O Flux Treatment Difference is the difference in N2O flux between the treatment and baseline
control scenario and is used alongside SOC Temporal Stock Change Treatment Difference in
validation.

7. Emissions Reduction is quantity 3 and / or 6 (treatment differences) converted to equivalent
reduction in atmospheric CO2 (CO2e); the sum of these can be used for credit generation.

In summary, the model is initialized using SOC Pool Size, calibrated to the change in SOC Pool Size over 
time and N2O seasonal flux, and validated against the differences in these quantities between treatment 
and baseline control scenarios. For crediting, these impacts are converted to CO2e. 
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3 Model calibration 
Follows Model Requirements Section 2 

3.1 Description of model calibration 
DayCent-CR Version 1.1.0 was calibrated using an approach that is similar to empirical Bayes in some 
respects; our approach is not fully Bayesian due to the way the variance parameters are estimated. The 
model was calibrated using a joint Bayesian approach by simultaneously estimating the joint posterior 
parameters for SOC stock change and N2O flux (Appendix A). The joint posterior of DayCent parameters 
was estimated using the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm (Vrugt et al., 
2011; Vrugt, 2016), which is a Markov Chain Monte Carlo (MCMC) algorithm. For each new set of 
parameter values proposed by the DREAM algorithm, normalized sum loglikelihood for SOC temporal 
stock change across all SOC sites and normalized sum loglikelihood for N2O flux across all N2O sites 
was estimated separately, and the total sum log likelihood was passed back to the optimizer enabling the 
simultaneous calibration of these two emission sources. The DREAM algorithm has been used by Zhang 
et al. (2020) to calibrate DayCent for crop growth/production. To calibrate DayCent-CR for modeling 
SOC temporal stock change, the likelihood function was used as presented in Mathers et al. (2023) to 
allow for heterogeneous residual variance. For modeling N2O flux and flux change on a per-growing-
season basis (see Section 6.3), homogeneous residual variance was assumed based on a scatterplot of 
residuals versus measurement interval. For both SOC and N2O the likelihood function accounts for site 
(location) and year effects and estimates model error for predictions at new sites and is therefore suitable 
for the type of dataset used in this report i.e., data compiled from multiple experimental sites with 
repeated measurements that are correlated both in space and time. 

In brief, the likelihood function assumes that the error follows a zero mean multivariate Gaussian 
distribution per Equation 1: 

(Equation 1) 

where θ is a vector of parameters that are used by DayCent to predict SOC and N2O or that define the 
variance-covariance matrix Σ, �̂�mod and 𝑦obs are natural log transformations of SOC and N2O values
(modeled and observed, respectively), and 𝑛 is the number of observations. Both �̂�mod and Σ are functions
of the parameters θ. The log-based transformation was defined as follows to allow including negative 
N2O flux measurements in calibration: 

𝑌𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 = log(1 −  𝑌𝑚𝑖𝑛 + 𝑌)

(Equation 2) 

where 𝑌 is the measured and modeled value of SOC and N2O and  𝑌𝑚𝑖𝑛  was set to the minimum
observation found in the dataset.  



CAR1459 DayCent-CR v1.1.0 Model Validation Report 8 

The variance-covariance matrix partitions model error into three components: variance between 
experimental sites σsite

2 , variance between years within sites σsite-year
2 , and unexplained residual variance 

σresid
2 . When calibrating SOC stock, σresid

2  was modeled as an exponential function of time: 

σresid
2 = {

σ2 exp(2𝑡ν) 𝑓𝑜𝑟 𝑆𝑂𝐶

σ2                   𝑓𝑜𝑟 𝑁20

(Equation 3) 

where t is the number of years since the first measurement (the time at which SOC is reinitialized in 
DayCent). σsite

2 , σsite-year
2 , σ2, and ν from Equation 3 are included in θ. These parameters were estimated

by fitting the model residuals from each MCMC iteration using a linear random effect model with two 
levels of random effects (random intercept for site and random intercept for year nested within site) 
(Pinheiro et al., 2000) and in the case of SOC, an exponential residual variance model that is a function of 
years since the first measurement when modeling the residuals for SOC. See the supplement to Gurung et 
al. (2020) for additional discussion of this approach. To evaluate the likelihood for each MCMC iteration, 
SOC residual models were fit with the R package nlme (Pinheiro et al., 2022) using the lme function, 
while N2O with homogenous variance model was fit with the lmer function from the lme4 package. The 
variance parameters were estimated via restricted maximum likelihood (REML) applied to the marginal 
model after adding in the Monte Carlo draws for the DayCent calibration parameters. This estimation 
procedure is similar to empirical Bayes (see Casella, 1985 and Carlin et al., 2009). However, in empirical 
Bayes, prediction and inference would be based on a single set of variance parameter estimates, whereas 
here prediction and inference are based on a distribution of variance parameter estimates. As a result, our 
approach is expected to capture more variability in the variance parameters than a traditional empirical 
Bayes analysis, but still less variability than a fully Bayesian analysis. 

The exponential residual variance model (Equation 3) was chosen for SOC stock changes because it was 
straightforward to interpret and implement (it is one of the standard variance structures supported by the 
nlme package (Pinheiro et al., 2022)) and it performed well in practice (see Section 9 and Section 10). 
Note that at time 0 (t = 0), the residual variance becomes σresid

2 = σ2 exp(2𝑡ν) = σ2 𝑒xp(0) = σ2. In
other words, σ2 is the residual variance at time zero. As shown in Appendix A, both  and ν were
estimated to be positive, so the residual variance never goes to zero, and increases as the time since SOC 
reinitialization increases. While exponential variance does not asymptote at long timescales in the way 
expected for true SOC dynamics, the increase in residual variance for the fitted model is modest over the 
time period in which the model will be deployed (per the CAR SEP, fields can generate credits for a 
maximum of 30 years). Please see Appendix E for diagnostics related to the impact of the exponential 
residual variance model on confidence interval width and coverage rates. 

The calibration of DayCent-CR was implemented in Python version 3.9 (Python Software Foundation) 
using the SPOTPY library (Houska et al., 2015). The DREAM algorithm is described in detail by Vrugt et 
al. (2009). The calibration was run with 9 MCMC chains, all of which were run until the R̂ statistic of 
Gelman and Rubin (1992) dropped below 1.2 as recommended by Vrugt et al. (2009), suggesting 
convergence of the posterior distribution of model parameters. The first 50 percent of each chain was 
discarded as the “burn-in” period and the remaining 50 percent of each chain was used to summarize the 
posterior of the parameters θ. The post-burn-in simulations were thinned further to reduce computational 
burden during crediting, as described in the k-fold validation steps. Trace plots and plots of Gelman-
Rubin R̂ statistics (i.e., parameter shrinkage factors) are provided in Appendix C. 
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Calibration and validation of the model were conducted simultaneously using a k-fold cross-validation 
procedure with k=5 folds. This is a statistical approach that ensures independence between calibration and 
validation datasets, as described on page 4 of the Model Requirements, and highlighted in the definition 
section for the term “Validation”. In brief, the approach employed for this report consists of six major 
steps: 

1. Study sites were first randomly divided into five non-overlapping disjoint groups (i.e. folds). If a
given experiment was assigned to a fold, all the individual observations associated with that
experiment were then assigned to that fold. To maintain balance between emission sources, fold
assignment was done separately for SOC and N2O so that each fold contained one-fifth of the
SOC sites and one-fifth of the N2O sites. Maps of the study sites used in this report are provided
in Figure 2.

2. Second, for each of five data splits, one fold was reserved for validation and the remaining four
folds were used for model calibration, giving an approximately 80-20 percent allocation in each
data split between calibration and validation datasets, respectively.

3. Third, for each data split, Bayesian calibration was performed with DREAM as described above,
resulting in a joint posterior distribution of model parameters estimated from the calibration data
for that fold. As noted above, the first 50 percent of each chain was discarded as the “burn-in”
period.

4. Fourth, out-of-sample predictions were made in each data split using the validation dataset and
parameters from the joint posterior distribution that was calculated in step three from sites used
for calibration. Out-of-sample predictions were then used to estimate the posterior predictive
distributions of N2O and SOC differences between the experimental treatments at the second time
point, similar to the methods described in Gurung et al. (2020) and Mathers et al. (2023).

5. Fifth, model performance was quantified by computing model bias, root mean square error
(RMSE), and 90 percent prediction interval coverage of the validation data, evaluating each
metric separately for each fold and then calculating their means across all folds.

6. For the sixth and final step, the model was re-calibrated using the full dataset, and the resulting
calibrated parameters retained to serve carbon credit predictions by saving 176 joint posterior
draws evenly spaced over the post-burn-in period1. Whereas accurate estimates of tail
probabilities are needed to assess validation criteria (i.e., coverage rates of 90 percent intervals),
credit simulations require fewer posterior draws because only accurate estimates of variance are
needed; because draws are by definition less likely to fall in the tails than near the center of the
distribution, it takes more draws to obtain stable estimates of the 5th and 95th percentiles than to
obtain stable estimates of variance (see Davison et al., 1997, Ch. 2.5.2 for related discussion in
the context of bootstrap resampling). Furthermore, crediting is done at a large scale and DayCent
simulations can be time-consuming, so computational efficiency is a key consideration. See
Section 10 for a description of how the saved posteriors are used during crediting, and Appendix
D for a comparison between thinned and full posteriors.

1 Nineteen or twenty evenly spaced draws were taken from each of the nine chains, resulting in 176 total draws. 
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Figure 2. Locations of experimental sites with measurements of SOC (top) and N2O (bottom) used for calibration and validation 
of DayCent-CR. 

The prior distributions of parameters adjusted during the calibration process and summary statistics of 
marginal posterior distributions of model parameters for the final step using the full dataset are provided 
in Appendix A. For the full parameter set and auxiliary files needed to reproduce the validation, please see 
DayCentCR_1.1.0_validation_supporting_files.zip. 

Choosing the final parameter set by recalibrating to the full dataset, as described in step 6 of the 
calibration procedure above, is common practice in fields making frequent use of statistical methods for 
cross-validation (Kuhn and Johnson, 2013; Roberts et al., 2017) because it provides a final 
parameterization that is maximally informed by all available training data. This approach complies with 
Section 2.3.1.2 of the Model Requirements (“the method of choosing the final parameter set must be a 
prespecified part of the cross-validation method”, and “the parameter values identified as the final 
validated set…must be the ones used [for crediting]”), and cross-validation gives a reasonable estimate of 
the performance that can be expected from the final parameter set (a model fit to the full training set 
typically performs as well or better on new data than was observed on hold-outs from the training set 
during cross-validation (Roberts et al., 2017)). However, steps four and five of our cross-validation 
procedure inherently perform validation on five separate parameter sets, one per data split, that will differ 
slightly from the final joint posterior distribution created in step six for use during crediting, so care is 
needed to demonstrate that the final values and the cross-validation results are consistent with each other. 
To check this, a comparison between the parameter distributions obtained from cross-validation and from 
fitting the full dataset was completed (Appendices A and C), as well as between the distributions of model 
outputs (Section 10) to ensure differences between the validated and final parameterizations, particularly 
for the most sensitive parameters, would not materially change model results. 
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3.2 Model setup 
For calibration and validation, DayCent-CR was run for all treatments and sites (See Supporting Materials 
1 for site-level summaries and the full dataset in DayCentCR_1.1.0_validation_supporting_files.zip). The 
following describes the procedure used to simulate the experimental sites for the calibration and 
validation approach described above. 

The model-driving input files for each site were created following the procedures described in Section 5. 
When site-specific data were available from the studies, these data were used as model inputs. Where site-
specific data were not available from the experimental publication, soil data (texture and pH, which were 
then used to estimate other missing soil parameters) were taken from the gSSURGO database (Soil 
Survey Staff, 2022) and management information was estimated from typical agronomic practice in the 
region (see Section 5.2 and Section 5.3 for details). Because accurate representation of site-level weather 
conditions is crucial to ensuring model predictions match site-level agronomic histories, climate data 
(minimum and maximum daily temperature, precipitation) were taken from the highest-resolution 
available of the following sources, in this order of preference:  

• On-site weather stations (when records were available for the historic period as well as the
experimental period)

• PRISM database (United States only)2

• The nearest national weather station for non-U.S. sites (Barr´e et al., 2010; Environment and
Climate Change Canada3; Australian Government; Bureau of Meteorology4)

• Soil and Water Assessment Tool global weather data5

• Global Land Data Assimilation System6

DayCent-CR divides SOC into three conceptual pools that differ only in their turnover time and do not 
correspond to any physically measurable soil fractions. In order to estimate the proportions of the SOC 
pools, equilibrium simulations were conducted of native grassland (5,000 to 7,000 years) to bring the 
SOC pools to a steady state, followed by a simulation of historical agricultural management based on 
available data from the site or the region it is in, consistent with methods and data used in the U.S. 
National GHG Inventory (U.S. EPA, 2020). These historical periods before the experiments began were 
simulated using the default parameters in the DayCent-CR model. At the end of the historic period, the 
estimated proportions of SOC pools are used to fractionate the measured SOC at the beginning of the 
experiment to active, slow, and passive SOC pools in the model. After initialization of the SOC pools to 
match these proportions to the measured pool size, simulations of the experimental period were used to 
perform the calibration and validation process (see Section 3.1). 

2 http://prism.oregonstate.edu 
3 https://climate.weather.gc.ca/historical_data/search_historic_data_e.html 
4 http://www.bom.gov.au/climate/data/ 
5 swat.tamu.edu/data/cfsr 
6 https://ldas.gsfc.nasa.gov/index.php/gldas 
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21 of the 48 experimental sites that generated SOC observations used in this analysis did not report SOC 
measurements at the beginning of the experiment. In these cases the entire history of the experiment was 
simulated, but the simulations were divided into two eras: 

1. The period between experiment start and first SOC measurement was simulated as part of the
historic period, then the simulation was stopped and model SOC was initialized to match the first
SOC measurement as described above.

2. The period between first SOC measurement and experiment end was then simulated beginning
from the reinitialized SOC values and the simulation result was used for calibration and
validation.

This approach conforms to CAR SEP requirements that model simulations of SOC change for carbon 
credits must be initialized with in-field measurements of SOC. In other words, all reported experimental 
practices are modeled, but the model is calibrated and validated using equilibrium simulations, site 
history, and initial SOC measurements in the same way as this information would be used in a CAR SEP 
project, and calibration and validation are constrained to the time periods for which SOC observations are 
available. For some sites, initial SOC measurements were quite late relative to the full duration of the 
experiment (e.g., the Otis site, which started in 1966 but SOC was not measured until 2005). While this 
does leave portions of experimental history out of the calibration/validation exercise, initial SOC is a 
highly influential model driver and the error introduced by attempting to estimate SOC at experiment start 
time would be more detrimental to model performance than restricting validation of these sites to the 
period that is well constrained by measurements. 

The same initialization procedure will apply to the use of the model in carbon crediting for a CAR SEP 
project, using site latitude and longitude, soil carbon measurements, and soil physical and chemical 
properties (described in Section 5). Comparable site-specific climate data (as demonstrated by peer-
reviewed evidence in the CAR1459 Monitoring Plan) will be provided for all project simulations. Native 
grassland will be assumed for all the CAR SEP projects for the initial period simulated to reach a model 
steady-state (consistent with the U.S. National GHG Inventory and current implementation in COMET-
Farm). The version of the model evaluated in this report requires the input of management information to 
begin in the year 2000. This means the model spin-up period, as described in Model Requirements 
Section 3.4.1.3, will extend from Jan 1, 2000 until the beginning of the required historic baseline period 
for a given location being simulated. All management information for the model spin-up period, required 
historic baseline period, and with-project periods must meet CAR SEP requirements and will be described 
in the CAR1459 Monitoring Plan. 

3.3 Documentation of model parameter sets 
DayCent-CR has hundreds of parameters and calibrating all of them simultaneously would be 
computationally impractical. Many of these model parameters have been previously tested and applied 
extensively without change, for example annually in U.S. National GHG inventory simulations (U.S. 
EPA, 2020), and not all model parameters have an impact on SOC and N2O dynamics. Sixty-two (62)  
parameters were initially selected for consideration in the calibration exercise (Appendix A).The 
parameters included 27 directly related to SOC processes and to DayCent-CR’s soil organic matter 
decomposition sub-routine, 1 parameter related to soil water (“FWLOSS(2)”) which scales potential 
evapotranspiration, and 34 parameters related to N2O. Candidate parameters for SOC calibration were 
selected because they control the decay rate of the SOC pools and carbon transfer efficiency between 
pools and directly affect the magnitude of SOC stocks and SOC stock differences. Similarly, candidate 
parameters for N2O calibration were selected because they control nitrification, denitrification, water 
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balance, and other dynamics related to nitrogen cycling. While other parameters associated with other 
processes such as plant production may indirectly influence modeled SOC and N2O dynamics, the 
selected parameters mediated these relationships. Consequently, those parameters were left as constants 
and assigned the default values used in COMET-Farm and the U.S. National GHG Inventory. 

All parameters were assigned independent prior distributions provided in Appendix A. For the SOC 
calibration, the initial list of parameters and their prior ranges were taken from the values reported in 
Gurung et al. (2020). This initial list was then updated to include potentially influential water parameters 
and to align each parameter’s prior range with values that are biogeochemically plausible for the 
conditions present in the project area. 

The same parameters for SOC were calibrated that had been identified using global sensitivity analysis 
(GSA) in Mathers et al. (2023) and the past calibration report (Indigo Ag, 2022). In this analysis, 10 
parameters were identified for SOC that each contributed more than 0.5 percent of variance (Appendix 
A). This inclusive cutoff was chosen to reduce the dependence of the GSA on the calibration 
dataset. Bayesian calibration was then performed on these 10 most influential parameters for SOC, and 
the rest of the parameters were fixed to their default values. The calibration also included REML 
estimates of four variance parameters (σsite

2 , σsite-year
2 , σ2, and ν), as described in Section 3.1.

To identify additional parameters for calibration with N2O flux observations, we used one at a time (OAT) 
sensitivity analysis. OAT was used instead of GSA because GSA results were inconsistent with expert 
knowledge of model structure, and results varied across the project domain. By contrast, OAT identified 
parameters that directly control N2O across the project domain. We believe this difference is caused by 
the more thorough exploration of parameter space by GSA, which makes it more sensitive to outliers, 
nonlinear effects, parameter interactions and numerical artifacts (Razavi and Gupta, 2015). Appendix A 
presents the parameters used in the N2O OAT, rationale for their prior distributions, and results of the 
sensitivity analysis. 

One important consideration when choosing the parameters was to avoid selecting site- or environment- 
specific parameterizations, given that the goal of this exercise is to perform a joint calibration across all 
sites. This ensures that the model is generalizable and reduces the chance of overfitting a parameter to a 
specific site or site categories that are better represented in the calibration dataset.  

Based on OAT, we added two additional parameters (damrmn(1) and VARAT[1,2](1,1)) to the original ten 
previously identified by GSA (Mathers et al., 2023; Indigo Ag, 2022). These parameters were found to be 
highly sensitive across sites, consistent with expectations based on model structure. OAT characterized 
the univariate influence of each parameter on the variance of modeled N2O fluxes. To test the sensitivity 
of each parameter, we ran the model at fifty random draws from the prior parameter distribution while 
keeping all other parameters fixed at their defaults. Then we calculated the coefficient of variance 
(variance divided by the mean, CV) of predicted N2O flux. Parameters were ranked by this CV. Although 
OAT cannot capture higher order interactions between parameters, it describes relative model output 
variability. Other than the selected parameters, N2O showed < 1 percent sensitivity (CV) to the majority 
of the parameters. 

Appendix A includes the following: 

• Prior distributions for all DayCent parameters included in the Bayesian calibration, along with
parameter descriptions and justification for prior specification.
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• Summary statistics of the marginal posterior distributions for SOC parameters and random
effects.

• Summary statistics for N2O parameters and random effects.

Sampler diagnostics, including plots and statistical summaries of marginal posterior densities for each 
fold, along with trace plots, and Gelman-Rubin (�̂�) statistics, are available in Appendix C. For the full 
parameter set and auxiliary files needed to reproduce the validation, please see 
DayCentCR_1.1.0_validation_supporting_files.zip. 

During the calibration process, instead of estimating the posterior distribution of model parameters for 
each Land Resource Region (LRR) separately, model parameters were treated as population-level 
variables and obtained using a single calibration for all LRRs. Because the joint posterior was used from 
this single calibration in crediting runs, the bias and uncertainty estimates presented here are generalizable 
to all crop types and management practices represented within the dataset used in this validation report. 

3.4 Justification for splitting of experimental data 
Because only a limited number of experiments have measured enough parameters over a long enough 
time span to parameterize soil biogeochemical models confidently, it is desirable to use studies from sites 
with the highest-quality measurements for both calibration and validation. To retain statistical 
independence of calibration and validation data (Model Requirements, Section 2), the calibration and 
validation were performed using a 5-fold cross-validation method following Section 2.3 of the Model 
Requirements. Cross-validation retains statistical independence of calibration and validation data by 
ensuring that each candidate model is never evaluated against the same data that trained it, but also retains 
efficiency by ensuring that every data point contributes to both the calibration and validation processes. 
Because of these properties, cross-validation is widely used for model evaluation in cases where the goal 
of calibration is to minimize prediction bias when data are limited. 

To retain independence while dividing the available dataset into five folds, experimental sites were 
assigned into folds, taking into account the likelihood of high spatial and/or temporal correlation of 
repeated measurements from the same site. For sites where all experiments share a physical location and 
management history, all observations were assigned to the same fold. For sites with multiple experiments 
that are near each other but differ in timing or duration of experiment, crop type, or primary experimental 
goal (i.e., that differ at the level of CFG x PC combination, per Model Requirements, Section 2), the data 
from these experiments may be correlated in space (climate and soil factors, conditions during model spin 
up) but are likely uncorrelated in management. Therefore, these experiments were considered as separate 
“sites” and were each randomly allocated to folds. The intention of this approach was balancing the need 
for independent folds against the need to ensure that each fold contained approximately one-fifth of the 
data, as well as sufficient data from each crop and practice to be validated. To check for correlations not 
addressed by this approach, spatial variograms of model residuals after calibration were also created (see 
Appendix C). While there appears to be spatial correlation in SOC pool size, the range of spatial 
correlation was estimated to be 427 kilometers, and there does not appear to be spatial correlation in the 
SOC residuals, mean N2O flux, or N2O residuals. 
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4 Project domain 
Follows Model Requirements, Sections 3.1 and 3.2 

4.1 Practice categories 

The project intends to credit practices (Appendix B) that are included in four PCs (Table 3). 

Table 3. Practice categories included in the project domain. 

PC Abbreviation 
Inorganic nitrogen fertilizer application NFERT 
Organic amendments application ORG 
Soil disturbance and/or residue management DISTURB 
Cropping practices CROP 

4.2 Crop functional groups 
The project includes crops spanning five CFGs as provided in Table 4. 

Table 4. CFGs included in the project domain. 

CFG Example 
crops 

Lifecycle Photosynthetic 
pathway7 

Growth 
Form 

Nitroge
n fixing 

Flooded / 
Not 
Flooded 

C3A Wheat, canola Annual C3 Herbaceous No Non-
flooded 

C3AN Soy, annual 
alfalfa8 

Annual C3 Herbaceous Yes Non-
flooded 

C3PN Perennial 
alfalfa, crown 
vetch 

Perennial C3 Herbaceous Yes Non-
flooded 

C3S Cotton Annual C3 Shrub No Non-
flooded 

C4A Corn, sorghum Annual C4 Herbaceous No Non-
flooded 

7 Indicates the method of carbon fixation in plants (see Forseth, 2010) 
8 Note that crops with the genetic potential to grow perennially (e.g., alfalfa, vetch, clover) were included in this CFG when they 
were only grown for a single season, qualifying them as annuals per Section 3.2.1 of the Model Requirements. 
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4.3 Land resource regions 
The project encompasses all LRRs in the continental U.S. (Table 5) and 8 IPCC climate zones (Table 6). 

Table 5. LRRs occurring in the project area. 

LRR Name 
A Northwestern Forest, Forage, and Specialty Crop 
B Northwestern Wheat and Range 
C California Subtropical Fruit, Truck, and Specialty Crop 
D Western Range and Irrigated 
E Rocky Mountain Range and Forest 
F Northern Great Plains Spring Wheat 
G Western Great Plains Range and Irrigated 
H Central Great Plains Winter Wheat and Range 
I Southwest Plateaus and Plains Range and Cotton 
J Southwestern Prairies Cotton and Forage 
K Northern Lake States Forest and Forage 
L Lake States Fruit, Truck Crop, and Dairy 
M Central Feed Grains and Livestock 
N East and Central Farming and Forest 
O Mississippi Delta Cotton and Feed Grains 
P South Atlantic and Gulf Slope Cash Crops, Forest, and Livestock 
R Northeastern Forage and Forest 
S Northern Atlantic Slope Diversified Farming 
T Atlantic and Gulf Coast Lowland Forest and Crop 
U Florida Subtropical Fruit, Truck, and Specialty Crop 

Table 6. Climate zones defined by IPCC (2019) appearing in the project. 

IPCC climate zone IPCC climate zone 
abbreviation 

warm temperate dry WTD 
cool temperate dry CTD 
warm temperate moist WTM 
cool temperate moist CTM 
boreal dry BD 
boreal moist BM 
tropical moist TrM 
tropical dry TrD 
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4.4 Soils 
The project includes all 12 soil textures in the USDA soil texture classification along with the clay content 
at the midpoint of each texture class definition (Table 7).  

Table 7. Names, abbreviations, and midpoint clay contents for USDA soil texture classes occurring in the project area. 

Abbreviation Texture class Percent clay 
Cl Clay 70 
ClLo Clay loam 35 
Lo Loam 20 
LoSa Loamy sand 10 
Sa Sand 5 
SaCl Sandy clay 40 
SaClLo Sandy clay loam 30 
SaLo Sandy loam 10 
Si Silt 5 
SiCl Silty clay 45 
SiClLo Silty clay loam 35 
SiLo Silt loam 15 

4.5 Emission sources 
The model was validated for changes in SOC and N2O emissions. Emissions of CH4 are not included in 
this report. 

4.6 Domain covered by this validation 
The domains validated in this report are summarized in Table 8 and Table 9 for SOC and N2O, 
respectively. The differences between Table 8 and Table 9 are due to a lack of available observations in 
Indigo’s dataset. Table 10 and Table 11 summarize the biophysical attributes for each validated domain. 

Following Model Requirements Section 3.3.1 paragraph 5 (allowing multiple CFGs to be aggregated 
when validating the ORG PC for SOC), a combined dataset for the ORG PC from all annual crops 
combined is included.  

Model Requirements Section 3.3.1 paragraph 7 were followed allowing cropping systems that use 
irrigation as a background practice to not require validation of the WATER PC. This provision is met 
because multiple studies in the validation dataset use irrigation as a management practice. The range of 
precipitation regimes included in the validation dataset (SOC 17-163 cm yr-1, N2O 18-172 cm yr-1), 
covering at least 3 LRRs or IPCC climate zones, are considered an adequate proxy for testing the effects 
of artificial rainfall supplied by irrigation. 

To ensure accuracy in determining the range of climate conditions validated for each category, IPCC 
climate zones were assigned to each site through application of the decision tree provided in Figure 
3A.5.2 in the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 
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(IPCC, 2019) using high spatial resolution climate data from TerraClimate9 and WorldClim10 2.1. One site 
(Fort Valley) was manually reclassified from Warm Temperate Dry to Warm Temperate Moist on grounds 
that the evapotranspiration reported by TerraClimate was anomalously high and that papers from this site 
consistently refer to it as having a humid climate.  

Table 8. Combinations of CFG and PC that are validated for SOC in this project. 
+ is validated, - is not validated

PC 
Crop Functional Group 

C3A C3AN C3PN C3S C4A 
CROP + + + + + 
DISTURB + + - + + 
NFERT + + + - + 
ORG + +  - + via Org x

Annual
+ 

Table 9. Combinations of CFG and PC that are validated for N2O in this project. 
+ is validated, - is not validated
PC Crop Functional Group 

C3A C3AN C3PN C3S C4A 
CROP + + + - + 
DISTURB + + - - + 
NFERT + + - - + 
ORGa + - - - + 

a. Note that CFGs have not been pooled for validation of ORG x N2O. Although Model Requirements Section 3.3.1 paragraph 5
does not state any limits on which emission sources may use the pooled-CFGs rule, we believe it should be applied only when
validating SOC changes. The underlying logic of the rule is that the amount of carbon in the added organic matter is the
determining control on the effect of ORG on SOC, and that this will overwhelm any differences between annual CFGs. In
contrast, the effect of organic amendments on N2O flux could trigger crop-mediated feedbacks, e.g., the N2O response to ORG
cannot necessarily be assumed similar in legumes and non-legumes. Therefore, we interpret the “pooled annual CFGs for ORG”
rule as a “pooled annual CFGs for ORG x SOC” rule and recommend that CAR consider stating this explicitly in future revisions
of the Model Requirements.

9 https://www.climatologylab.org/terraclimate.html 
10 https://worldclim.org/data/worldclim21.html 
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Table 10. Biophysical attribute ranges across which each PC/CFG was validated for SOC, meeting minimum requirements 
outlined in Model Requirements Section 3.3, Requirement 2.  
All PC-CFG categories pass the “stacking” requirement (Model Requirements Section 3.3, Requirement 1) by containing at least 
one study that isolates the effect of the PC change being validated. See Supporting Materials 1 for counts of stacked and 
unstacked observations. Clay range refers to the difference in the maximum and minimum clay percentages among sites. 

PC CFG # of 
sites 

# of 
observations 

LRRs Climate 
zones 

Countries Soils Clay 
range 
(%) 

CROP C3A 26 400 C, H, L, 
M, P, S 

CTD, 
CTM, 
WTD, 
WTM 

Australia, 
Canada, 
England, 
France, 
USA 

Cl, ClLo, 
Lo, 
SaClLo, 
SaLo, SiCl, 
SiClLo, 
SiLo 

54 

CROP C3AN 22 319 C, H, L, 
M, P, S 

CTD, 
CTM, 
TrM, 
WTD, 
WTM 

Australia, 
Brazil, 
Canada, 
England, 
France, 
USA 

Cl, ClLo, 
Lo, SaLo, 
SiCl, 
SiClLo, 
SiLo 

54 

CROP C3PN 7 91 S CTD, 
CTM, 
TrM, 
WTD, 
WTM 

Brazil, 
Canada, 
China, 
England, 
France, 
USA 

Lo, SaLo, 
SiClLo, 
SiLo 

20 

CROP C3S 6 162 C, P TrM, 
WTD, 
WTM 

Australia, 
Brazil, USA 

Cl, ClLo, 
SaLo 

54 

CROP C4A 20 230 C, H, L, 
M, P, S 

CTD, 
CTM, 
TrM, 
WTD, 
WTM 

Brazil, 
England, 
France, 
USA 

Cl, Lo, 
SaLo, SiCl, 
SiClLo, 
SiLo 

40 

DISTURB C3A 13 96 B, C, F, 
G, H, L, 
M, P 

CTD, 
CTM, 
WTD, 
WTM 

France, 
Switzerland, 
USA 

Cl, ClLo, 
Lo, SaLo, 
SiClLo, 
SiLo 

35 

DISTURB C3AN 11 75 C, L, M, 
N, P 

CTD, 
CTM, 
TrM, 
WTD, 
WTM 

Brazil, 
France, 
Switzerland, 
USA 

Cl, ClLo, 
Lo, SaLo, 
SiClLo, 
SiLo 

40 

DISTURB C3S 4 49 C, P TrM, 
WTD, 
WTM 

Australia, 
Brazil, USA 

Cl, ClLo, 
SaLo 

43 

DISTURB C4A 15 228 K, L, M, 
N, P 

CTD, 
CTM, 
TrM, 

Brazil, 
France, 
Switzerland, 
USA 

Cl, Lo, 
SaLo, 
SiClLo, 
SiLo 

40 
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PC CFG # of 
sites 

# of 
observations 

LRRs Climate 
zones 

Countries Soils Clay 
range 
(%) 

WTD, 
WTM 

NFERT C3A 16 227 B, C, F, 
H, L, M, 
P, S 

CTD, 
CTM, 
WTD, 
WTM 

Canada, 
England, 
France, 
USA 

Lo, SaLo, 
SiClLo, 
SiLo 

25 

NFERT C3AN 8 83 C, L, M, 
P, S 

CTM, 
WTD, 
WTM 

France, 
USA 

Lo, SaLo, 
SiClLo, 
SiLo 

25 

NFERT C3PN 4 59 S CTD, 
CTM, 
WTM 

China, 
England, 
France, 
USA 

Lo, SaLo, 
SiLo 

19 

NFERT C4A 16 168 C, E, H, 
K, L, M, 
N, P, S 

CTD, 
CTM, 
WTD, 
WTM 

France, 
USA 

ClLo, Lo, 
LoSa, 
SaLo, 
SiClLo, 
SiLo 

25 

ORG Annua
ls 

10 76 B, C, E, 
L, M 

CTD, 
CTM, 
WTD 

Canada, 
England, 
USA 

ClLo, Lo, 
LoSa, 
SaLo, 
SiClLo, 
SiLo 

29 

ORG C3A 10 125 B, C, M, 
S 

CTD, 
CTM, 
WTD, 
WTM 

Canada, 
England, 
Switzerland, 
USA 

Cl, ClLo, 
Lo, SaLo, 
SiClLo, 
SiLo 

34 

ORG C3AN 5 31 C, M, S CTM, 
WTD, 
WTM 

England, 
Switzerland, 
USA 

Cl, Lo, 
SaLo, 
SiClLo, 
SiLo 

34 

ORG C4A 7 37 C, E, L, 
M, S 

CTD, 
CTM, 
WTD, 
WTM 

England, 
USA 

ClLo, Lo, 
LoSa, 
SaLo,  
SiClLo, 
SiLo 

25 
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Table 11. Biophysical attribute ranges across which each PC/CFG was validated for N2O, meeting minimum requirements 
outlined in Model Requirements Section 3.3, Requirement 2.  
All PC-CFG categories pass the “stacking” requirement (Model Requirements Section 3.3, Requirement 1) by containing at least 
one study that isolates the effect of the PC change being validated. See Supporting Materials 1 for counts of stacked and 
unstacked observations. “Clay range” refers to the range of clay percentage among sites. 

PC CFG # of 
sites 

# of 
observations 

LRRs Climate 
zones 

Countries Soils Clay 
range 

CROP C3A 13 103 E, F, G, 
H, K, L, 
M, N 

CTD, 
CTM, 
WTM 

Canada, 
USA 

Cl, ClLo, 
Lo, 
SaClLo, 
SaLo, 
SiLo 

51 

CROP C3AN 14 92 E, F, G, 
K, L, M, 
N 

CTD, 
CTM, 
WTM 

Canada, 
USA 

Cl, ClLo, 
Lo, 
SaClLo, 
SaLo, 
SiLo 

51 

CROP C3PN 6 86 E, F, K, 
M, S 

CTD, 
CTM 

Canada, 
USA 

Cl, ClLo, 
Lo, SiLo 

40 

CROP C4A 11 115 B, G, K, 
M, N 

CTD, 
CTM, 
WTD, 
WTM 

Canada, 
USA 

Cl, ClLo, 
Lo, 
SaClLo, 
SiLo 

48 

DISTURB C3A 11 61 C, E, F, 
H, L 

CTD, 
CTM, 
WTD 

Canada, 
China, 
Ireland, 
Switzerland, 
USA 

Cl, ClLo, 
Lo, 
SaLo, 
SiLo 

51 

DISTURB C3AN 7 25 C, E, L, 
M 

CTD, 
CTM, 
WTD 

Canada, 
Switzerland, 
USA 

Cl, Lo, 
SiLo 

43 

DISTURB C4A 11 78 C, G, K, 
L, M, R 

CTD, 
CTM, 
WTD, 
WTM 

Canada, 
China, USA 

Cl, ClLo, 
Lo, 
SaLo, 
SiLo 

46 

NFERT C3A 19 206 C, D, F, 
H, K, L, 
N, P 

CTD, 
CTM, 
WTD, 
WTM 

Australia, 
Canada, 
Germany, 
Ireland, 
USA 

Cl, ClLo, 
Lo, 
LoSa, 
SaLo, 
SiClLo, 
SiLo 

69 

NFERT C3AN 6 14 F, G, K, 
L, N, S 

CTD, 
CTM, 
WTM 

USA ClLo, Lo, 
SiLo 

15 

NFERT C4A 24 528 B, G, K, 
L, M, N, 
P, S 

CTD, 
CTM, 
WTD, 
WTM 

Australia, 
Canada, 
USA 

Cl, ClLo, 
Lo, 
SaLo, 
SiLo 

62 
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PC CFG # of 
sites 

# of 
observations 

LRRs Climate 
zones 

Countries Soils Clay 
range 

ORG C3A 5 39 D, P CTD, 
CTM, 
WTM 

Canada, 
Switzerland, 
USA 

Cl, LoSa, 
SaLo, 
SiCl, 
SiLo 

40 

ORG C4A 6 98 B, D, G, 
N 

CTD, 
CTM, 
WTD, 
WTM 

Canada, 
USA 

Cl, ClLo, 
SiLo 

63 
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5 Description of data requirements 
Follows Model Requirements, Section 3.3.  

To run DayCent-CR, the following information must be provided. 

5.1 Site-specific model drivers 
• Daily weather data for the site and time period to be simulated: precipitation, maximum and

minimum temperature. DayCent-CR does not use the extra weather variables that are optional in
other versions of DayCent (solar radiation, relative humidity, and windspeed); these variables are
estimated using an internal calculation based on site latitude.

• Soil texture (sand, silt, clay), bulk density, pH, and hydraulic conductance for each soil horizon
from the surface to the first fully root-restrictive layer. Because DayCent imposes strict internal
restrictions on the relationships between these variables, Indigo follows the recommendation of
the DayCent developers to compute bulk density and hydraulic conductance from soil texture
using the equations of Saxton et al. (2006) even when direct measurements are available.

• Initial SOC stock in the 0 – 30 cm soil layer
• Depth to bedrock
• Site latitude

5.2 Management information 
• Site history from before the experiment, for running modeled SOC pools to equilibrium: native

vegetation type, approximate historic management. When not available, site history is inferred
from local native vegetation types and regional historic agricultural records.

• Identities, including cultivar information when possible, of all crops in the rotation
• Planting dates and methods
• Tillage dates, types, and intensities: implements used, depth, number of passes
• Harvest and termination dates, methods, and types (e.g., grain, hay percent offtake, fruit, etc.)
• Residue management (e.g., burning, straw/stover removal)
• Nitrogen fertilization dates, types, amounts, NI and CRNF use, and application methods
• Herbicide dates and types
• Irrigation dates, types, amounts
• Organic matter addition dates, types (e.g., manure, green manure, compost, straw amendments,

nitrogen fraction, C:N ratio, mass of the dry fraction)

5.3 Procedures for missing data 
While most published experiments give sufficient detail on the experiment treatment management, pre-
experiment details are often lacking. Whatever pre-experiment detail is provided in study documentation, 
or derived through communication with the experiment managers, is incorporated into model inputs for 
the simulation period leading up to the experiment. Sometimes more details can be gleaned from 
companion articles not emphasizing SOC or N2O. When no other detail is available for the pre-
experiment period information, the land use history most similar to the experiment itself is selected. 

Where no specific information is available, as is often the case in the portion of the simulation period 
years and decades preceding the experimental start date, common regional practices are derived from 
available sources on crops grown, tillage and fertilizer inputs (NASS, ERS-ARMS, CTIC). Where more 
soil information is needed than provided in the associated publications and by the experimental 
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researchers, information is obtained from USDA Web Soil Survey for the soil series mentioned in the 
publications. 
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6 Description of validation data collection process 
Follows Model Requirements, Section 3.3 Requirement 1 

Studies used for model validation were either identified from a database of SOC and N2O experiments 
that is contributed to and maintained by DayCent model developers from multiple research teams or 
obtained through publication search engines. The database tracks experiments found in peer-reviewed 
literature that report effects of management on SOC or N2O. The database is used to develop a set of 
model inputs for parameterization and testing that have been updated and used continually alongside such 
projects as the U.S. National GHG Inventory (U.S. EPA, 2020), in which the DayCent model simulates 
U.S. agricultural GHG emissions for reporting to the United Nations Framework Convention on Climate 
Change.  

The experiments selected have sufficient management information and reliable soil data to support model 
development and testing activities, i.e., all parameters listed above in Section 5 were reported, or could be 
inferred according to the procedures reported above in Section 5.3. The data compilation process focused 
on sites rather than individual publications because in many cases, especially for the longest-running 
studies that are of highest value for model validation, the SOC and/or N2O measurements and the 
information needed to parameterize DayCent-CR for the study are reported in multiple separate 
publications from one site. Once a site was selected for inclusion in the database, all relevant publications 
for that experiment were found by searching for combinations of the name of the experiment or research 
station, key authors, and geographic descriptions (e.g., name of nearest town or of the institution 
sponsoring the research site), and by following citations in publications already identified for the site.  

The identified studies are all from publicly reported long-term agricultural research sites where the effect 
of agronomic practices has been evaluated. Much effort by the DayCent model development team and 
Indigo has gone into assembling the relevant publications and databases associated with each experiment 
modeled. This includes all relevant datasets that the development team is currently aware of, through 
searching published literature, grey literature, and inquiries in research networks. Articles published any 
time before the end of 2022 were considered for inclusion. For this validation and calibration, data were 
evaluated from hundreds of papers and sites reporting SOC changes and/or N2O emissions in cropland 
soils.  

6.1 Data exclusion criteria 
Sites were excluded when they failed to meet one or more of the following criteria: 

• Sufficient information was provided to model the site accurately, or missing data could be
inferred according to procedures reported above in Section 5.3.

• When a study was conducted outside the United States, it was in an IPCC climate zone that is
present in the project domain.

• If SOC was measured:
o The measured quantity was stock (not just concentration) of soil organic carbon,

measured in units convertible to g C m-2 at each timepoint (typically in the form of
percent carbon measured by dry combustion or wet digestion, plus a reliable
measurement of soil bulk density by core or ring methods). Measurements of total soil
carbon were used only if there was evidence that inorganic carbon (carbonates) were not
present.
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o SOC was measured to a depth not less than 23 cm11 in layers allowing reasonable
approximation to 0-30 cm SOC stock: If no layer ended at exactly 30 cm, then the total
SOC was required to be estimable by interpolation of bulk density and percent carbon
across the depths that were reported. See
DayCentCR_1.1.0_validation_supporting_files.zip for details of the transformations
applied to each measurement. Most of the sites excluded from SOC validation were
excluded because of too-shallow SOC measurements.

o SOC was measured at least two times spanning a total interval of at least three years. If
the first 30-cm SOC measurement was not taken at the onset of the experiment, only the
data from timepoints after the first usable measurement were used.

• If N2O was measured:
o The measured quantity was net N2O-N flux from soil to atmosphere, in units convertible

to g N ha-1, across the duration of the measurement (typically in the form of repeated
static chamber surveys; flux tower data were also accepted).

o N2O fluxes were measured across at least one full growing season (planting to harvest).
o Sampling frequency was sufficient to confidently estimate total flux for the season:

Nominal sampling intervals of no more than 14 days, and preferably of 10 days or less.
Data gaps in otherwise well-sampled years were evaluated case by case and were either
filled by linear interpolation or fluxes were computed for a shortened season that started
after or ended before the gap. Most of the sites excluded from N2O validation were
excluded because of low sample frequency.

o Agronomic management data were reported in enough detail to confidently estimate total
nitrogen inputs for each year measured (assuming fertilization “typical for the region”
was not sufficient).

6.2 Temporal aggregation of N2O data 
Many N2O studies reported year-round measurements but had much lower sampling frequencies during 
the fallow season. In these cases, seasonal flux was computed from the portion of the year that was well-
sampled, and reported whole-year totals were not used. Studies that focused on short-duration events such 
as fluxes after thaw pulses, fertilization, or irrigation were included only if they also met the criteria 
above.  

To demonstrate adequate model performance for N2O at the seasonal scale, validation was done on 
changes in seasonal N2O flux totals rather than changes in daily fluxes. Therefore, the site selection 
process excluded studies that focused solely on short duration N2O events (e.g., measurements that track a 
thaw pulse but are then discontinued before the crop growing season) but included studies with short 
events in a full season of monitoring (often with increased sampling frequency around the event). After 
the full dataset was assembled, the observed N2O fluxes were checked to ensure they covered the entire 
calendar year, as specified by Model Requirements Section 3.3 Requirement 1. This check was done both 
in aggregate and within climate zones to confirm adequate coverage of seasonal cycles that may vary with 
geography (Figure 3a) and within CFGs to confirm adequate coverage of management cycles that may 
vary with crop type (Figure 3b).  

11 23 cm is equal to 9 inches and is a relatively common sample depth at sites where plow depth informed the soil 
sampling design.  
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Figure 3. a)  Number of N2O observations that cover each day of year, by CFG and climate zone; b) Distribution of N2O 
measurements by length of monitored season, with ~1-month bins, by CFG and climate zone. Histograms are stacked, so counts 
(y-axis) represent the total number of observations across all IPCC climate zones. 

To aggregate N2O fluxes from daily to seasonal scale, the sum of daily fluxes estimated by linear 
interpolation between observations beginning on the first measurement day and ending on the last 
measurement day were computed (Halvorson et al., 2016). Seasonal totals were not converted to 
estimates of annual fluxes, but instead were compared directly to the sum of daily modeled fluxes from 
the same range of days.  

Although DayCent-CR does not predict negative N2O fluxes, they do occur (Chapuis-Lardy et al., 2007). 
The N2O flux dataset included 5 of 1,222 observations (0.4 percent) that were below zero indicating net 
N2O uptake. All negative fluxes were retained because they are biophysically plausible and consistent 
with the distribution of N2O measurements. All of the negative values were from unfertilized treatments 
and include:  

• Four negative values that were > -20 g N ha-1 and statistically indistinguishable from zero.
• The minimum N2O flux of -460 g N ha-1 occurred at the glenlea_Tgas site (Tenuta et al., 2016)

and was collected without replication using the flux gradient approach but did not appear to be an
outlier among other observations at the same site. The glenlea_Tgas site was one of only two in
the validation dataset that used the flux gradient approach. The other site was elora (Wagner-
Riddle et al., 2007) and had an average standard error of a similar magnitude (415 g N ha-1, n =
15).
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6.3 Uncertainty calculations 
Where studies reported the uncertainty of their observations, the reported uncertainty values were 
extracted and used to compute pooled measurement uncertainty (PMU). The uncertainty of a given 
observation was recorded only if the original data were available or the publication reported a standard 
deviation (SD) or standard error (SE) for the treatment. When SD was reported, SE was calculated as 
𝑆𝐸 = √σ1

2 𝑛1⁄ . For a single study reporting N2O flux (Zebarth et al., 2012) that reported uncertainty for
the whole study but not for individual treatments, mean squared error across treatments was used as an 
estimate of variance within each treatment, and SE calculated as 𝑆𝐸 = √𝑀𝑆𝐸 𝑛1⁄  (Lajeunesse et al.,
2013). Uncertainty estimates were not collected when they were reported solely as treatment differences 
including post-hoc ANOVA comparison tests. N2O measurement uncertainties were extracted in a 
separate step after assembly of the mean flux dataset, so as a consistency check when calculating each 
N2O measurement uncertainty, its associated mean seasonal flux was also recalculated. The resulting 
uncertainty estimate was used only if the mean was within 10 percent of the previously calculated mean 
seasonal flux in the validation dataset.  

6.4 Category assignment 
To assign datapoints to PC x CFG categories, we first paired individual measurements of emissions 
(cumulative N2O flux or temporal change in SOC stock) into paired observations of the difference in 
emissions between two treatments measured at the same time, designating one treatment in each pair as 
the business-as-usual “baseline” and the other as the “changed practice.” Only comparisons supported by 
the study design were used. We then assigned CFGs by considering all crops present during the 
measurement period in either treatment, and assigned PCs by considering all differences in management 
between the paired treatments. For example, when considering a 2x2 experiment comparing high and low 
fertilization on maize with and without a radish cover crop, we: 

• Compared cover crops (yes vs no) within each fertilization level to obtain two observation pairs,
both of which were assigned to both the CROP x C4A and CROP x C3A categories.

• Compared fertilization levels (high vs low) within each cover crop treatment to obtain two
observation pairs: one FERT x C4A, one both FERT x C4A and FERT x C3A.

In the 2x2 case we did not consider the cross-treatment comparison between a high-N maize with no 
cover crop and low-N maize with cover crop. But if instead the experiment had compared “conventional” 
high-N-no-cover against “regenerative” low-N-with-cover with no ability to isolate the practices, this 
would be considered a stacked-practice (CROP and FERT) comparison under Section 3.3 Requirement 1 
of the Model Requirements, and this one comparison would be included in all of the categories CROP x 
C4A, CROP x C3A, FERT x C4A, and FERT x C3A, after confirming as described above that each 
category also contained unstacked observations. 

6.5 Validation dataset summary 
Table 12 summarizes the information included in the validation dataset. Where information from multiple 
publications was combined for a single validation site, all publications used are included in the citation 
list for that site. When a study reported the effect of changing more than one practice at once with no 
ability to isolate the effects of each practice, the stacked observations were held out until the category 
contained at least one other validation study which reported the same effect in isolation. This was done to 
ensure that no category was validated solely against stacked practice studies, per Section 3.3 Requirement 
1 of the Model Requirements.  
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Table 12. Summary of included SOC and N2O data. 

SOC N2O 
Number of sites usable for the calibration and 
validation process (see Figure 2) 

48 79 

Number of treatments 323 436 
Number of measurements a 856 990 
Number of practice change effect pairs b 1197 1381 

a. A measurement that is a mean of replicates is counted as a single measurement
b. 1 SOC and 283 N2O pairs were from PC x CFG combinations not validated in this report, and these pairs were

included in the calibration runs (therefore allowing the final parameter set to be informed by these observations)
but are not presented in this report.

For N2O, an additional 48 treatments across 16 sites were identified from the literature but initial 
simulations produced simulation errors (e.g., nitrogen balance non-closure) from at least one observation. 
To align with the restrictions imposed on model use during crediting (Section 11), these treatments were 
not used for either calibration or validation and are not included in the observation counts in Table 12.  
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7 Bias evaluation 
Follows Model Requirements Section 3.4 

7.1 Calculating bias and pooled measurement uncertainty 
In all categories, bias was computed for each study x PC x CFG combination as the mean difference 
between modeled and observed practice effects per Equation 4:  

bias = ∑
𝑚𝑜𝑑𝑒𝑙𝑒𝑑𝑖 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖

𝑛

𝑛

𝑖=1

(Equation 4) 

where observedi is the observed difference and modeledi is the modeled difference in the relevant 
biogeochemical dynamic (SOC pool change or seasonal N2O flux) between treatments in pair i, and n is 
the number of treatment pairs used from the study (per Equation 3.1 of the Model Requirements). When a 
study reported treatment pairs fitting multiple PC x CFG categories, only the observations matching the 
PC x CFG category of interest were included in the calculation. 

In the case of SOC, while Equation 4 calculates bias at the second time point, it is identical to calculating 
bias in emission reductions between the first and second time point because measured and observed SOC 
at the first time point are always identical (the CAR SEP requires that modeled SOC be constrained to 
equal observed SOC at the first time point), and these values cancel out when subtracting observedi from 
modeledi. When a treatment pair was measured at more than two time points, the starting year was taken 
as the first time point for all comparisons and each subsequent year was treated as a separate comparison. 
For example measurements in 2001, 2004, and 2007 are compared “3 and 6 years after 2001”, not “3 
years after 2001 and 3 years after 2004”. 

In the case of N2O, the modeled and observed differences are calculated as the difference in cumulative 
flux, across the entire measured season, between the treatments in a pair. When a treatment pair was 
measured for more than one season, the starting date for later seasons was chosen to avoid overlap with 
the end date of earlier seasons.  

Bias for each category was then computed as the unweighted mean of all per-study biases in that category, 
per Section 3.4 of the Model Requirements. 

Bias was compared against the pooled measurement uncertainty (PMU) of the observed data. The PMU 
calculation prescribed by Section 3.4 Equation 3.2 of Model Requirements has been adapted as explained 
in Appendix F to handle the cases with unequal sample sizes (Equation 5): 

PMU=√
∑𝑖=1

𝑘 𝜎𝑖
2(𝑛𝑖1 +  𝑛𝑖2  − 2)

∑ (𝑛𝑖1 + 𝑛𝑖2  − 2)𝑘
𝑖=1

(Equation 5) 

where k is the number of observations with uncertainty reported, 𝜎𝑖 is the standard error of the 𝑖𝑡ℎ

observation of differences between the treatments, and 𝑛𝑖1and 𝑛𝑖2 are the number of replicates included in
first and second study in the 𝑖𝑡ℎ treatment pair.
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In the previous report (i.e., Indigo Ag, 2022), PMU was calculated for each CFG x PC x ES, but in this 
report a global PMU was calculated across all CFG x PC categories within each ES. This is primarily 
because there was no a-priori hypothesis that CFG or PC impacts measurement uncertainty. With as few 
as two sites reporting uncertainty in some CFG x PC groups, there was high variability in estimation of 
PMU, as would be expected from error due to small samples and without evidence that this was related to 
CFG or PC. 

7.2 Example PMU calculation 
In this example, we use a subset of the dataset including 14 pairs of observations representing changes in 
SOC under different cropping practice changes in corn (Table 13). These observations were reported 
alongside uncertainties for both treatments and therefore allow computing the standard error of the 
difference between treatments as √σ1

2 +  σ2
2.

As described in Section 6, uncertainty was represented as standard error, transformed from SD where 
necessary. The needed summations over the product of degrees of freedom (df SE diff) and standard error 
(SE diff) to compute PMU are also shown in Table 13. This example calculation is shown for a single PC 
x CFG for brevity of the illustration. 

Table 13. Computing pooled measurement uncertainty for CROP x corn from the observed standard errors of differences (SE in 
units of g C / m2). 

Site n trt1 n trt2 SE trt1 SE trt2 SE diff df SE 
diff 

SE2 SE2 * df 

hoytville 3 3 670 419 790 4 624,416 2,497,664 
hoytville 3 3 419 37 421 4 176,904 707,616 
hoytville 3 3 670 509 841 4 707,954 2,831,816 
kbs 4 4 275 335 433 6 187,836 1,127,016 
kbs 30 30 276 208 346 58 119,439 6,927,462 
LaCage 4 4 420 660 782 6 611,993 3,671,958 
LaCage 4 4 536 725 902 6 813,063 4,878,378 
mead 4 4 455 288 539 6 289,982 1,739,892 
wooster_SOC 3 3 171 215 275 4 75,460 301,840 
wooster_SOC 3 3 154 80 174 4 30,102 120,408 
wooster_SOC 3 3 127 215 250 4 62,350 249,400 
wooster_SOC 3 3 179 80 196 4 38,455 153,820 
wooster_SOC 3 3 127 171 213 4 45,369 181,476 
wooster_SOC 3 3 179 154 236 4 55,743 222,972 
sum NA NA NA NA NA 118  NA 25,611,718 
PMU NA NA NA NA NA NA  NA 466 
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7.3 Bias relative to PMU for SOC and N2O 
Table 14. Pooled measurement uncertainty of difference in SOC between treatments (g C m−2 and g N ha-1 across observation 
interval for SOC and N2O, respectively).  
n obs: Number of pairs of observations used in uncertainty computation. n stacked: number of observations taken from stacked 
PCs. n sites: Number of experimental sites the observation pairs were taken from. Percent obs: percentage of the observation 
pairs in the full dataset with uncertainty available. Percent sites: percentage of the sites in the full dataset with uncertainty 
available for at least one pair of observations. Number of sites, percent of observations, and percent of sites are not used in the 
PMU calculation but are presented to show the degree of data coverage. 

Emissions 
source 

n obs n stacked n sites PMU Percent 
obs 

Percent 
sites 

SOC 187 64 11 501 6% 23% 
N2O 675 84 27 829 23% 33% 

7.4 Bias across all categories 
Bias for each site and overall, organized by PC x CFG x Emission Source group are presented in 
Supporting Materials 2 and summarized in Table 15. 

Table 15. Summary of bias calculations. 

ES PMU PC CFG Bias |Bias| < PMU 
SOC 501 CROP C3A -54.5 TRUE 

CROP C3AN -54.3 TRUE 
CROP C3PN -62.5 TRUE 
CROP C3S -79.3 TRUE 
CROP C4A -31.2 TRUE 
DISTURB C3A -86.7 TRUE 
DISTURB C3AN -136 TRUE 
DISTURB C3S -183 TRUE 
DISTURB C4A -75 TRUE 
NFERT C3A 11.2 TRUE 
NFERT C3AN -104 TRUE 
NFERT C3PN -184 TRUE 
NFERT C4A -98.2 TRUE 
ORG ANNUALS 378 TRUE 
ORG C3A 368 TRUE 
ORG C3AN 217 TRUE 
ORG C4A 59.4 TRUE 
ALL ALL 28.6 TRUE 

N2O 829 CROP C3A -183 TRUE 
CROP C3AN 114 TRUE 
CROP C3PN 233 TRUE 
CROP C4A 61.3 TRUE 
DISTURB C3A 6.18 TRUE 
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ES PMU PC CFG Bias |Bias| < PMU 
DISTURB C3AN -17.2 TRUE 
DISTURB C4A -211 TRUE 
NFERT C3A -349 TRUE 
NFERT C3AN -114 TRUE 
NFERT C4A 231 TRUE 
ORG C3A -572 TRUE 
ORG C4A -468 TRUE 
ALL ALL 55.8 TRUE 
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8 Model prediction error 
Follows Model Requirements, Section 3.5 

8.1 Description of calculation method 
Model uncertainty bounds on the difference in emissions between the practice and the baseline scenarios 
were estimated using a Monte Carlo method as described in Gurung et al. (2020). In brief, the method 
takes draws from the posterior predictive distribution of the calibrated model (see Section 3). The 
posterior predictive draws account for uncertainty in DayCent calibration parameters, as well as errors in 
DayCent predictions due to variability across sites, across years within the same site, and unexplained 
errors. After all simulations are complete, the 90 percent posterior prediction intervals are calculated by 
taking the 5th and the 95th percentiles from the Monte Carlo simulations of the posterior predictive 
distribution, providing the central interval of the posterior prediction (Gelman et al., 2014, p. 33). The 
performance metric for acceptable model uncertainty is the percentage of measured observations from 
out-of-sample validation data that fall within the 90 percent posterior prediction interval. 

Similar to the bias calculation described in Section 7, for each treatment pair the posterior prediction 
intervals are formed for the difference in SOC at the second time point and for the difference in 
cumulative N2O flux across the measurement period. Coverage rates are then calculated as the proportion 
of these posterior prediction intervals that contain the observed difference emissions. As in Section 7.1, 
difference in SOC at the second time point is equivalent to emission reductions between the first and 
second time point, because modeled SOC is constrained to be equal to observed SOC at the first time 
point, so the values at the first time point cancel out when comparing two treatments. 

Because the model is calibrated independently in each fold, and the folds have comparable predictor 
ranges (i.e. models calibrated with data from 4 folds are not extrapolating far outside their training data to 
validate the 5th hold-out fold), the average out-of-sample performance (i.e., bias and predictive interval 
coverage rates) across folds is a valid estimate of performance when the model is applied to new sites 
within the validated geographic, bioclimatic, and management domains outsides of the calibration dataset 
(Roberts et al., 2017). 

The Bayesian approach used here complies with the Model Requirements criterion that the model 
uncertainty bounds of each prediction should account for cases “where there are few validation data” 
(Model Requirements, Section 3.5) and that they “account for data variability” (Model Requirements, 
Section 3.5). In particular, when data are more available and informative, the likelihood outweighs the 
prior and the choice of prior has diminishing effects on the posterior density. However, when there is not 
enough data or little information, the posterior tends to reproduce the prior. In this validation report 
weakly informative independent priors are used (as recommended in Model Requirements Section 3.5) 
that have a uniform distribution defined by their lower and upper bounds (see Appendix A and Section 3.3 
for details). These uniform distributions are wide enough to expand beyond what is known or believed 
about the current understanding about the parameters’ range. For combinations of PC and CFG with little 
validation data or with observations that are highly variable, the method provides a conservative estimate 
of prediction error and can be improved in the future when additional datasets of higher quality are 
included. 

8.2 Model prediction error across all categories 
Supporting Materials 2 includes figures and tables of model prediction error for each PC x CFG x 
Emission Source group. For each group, there is a figure presenting measured versus modeled by fold and 
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by site; a figure presenting measured vs modeled overall, a histogram of residuals (predicted – observed), 
and a table including coverage overall and by fold. Table 16 summarizes the model prediction error.  

Table 16. Model prediction error. 

Emission 
Source PC CFG RMSE RMSE SD Coverage (%) 

SOC CROP C3A 1016 316 99.8 
CROP C3AN 983 315 99.4 
CROP C3PN 1161 356 100 
CROP C3S 760 219 100 
CROP C4A 1007 373 99.1 
DISTURB C3A 935 299 100 
DISTURB C3AN 971 403 100 
DISTURB C3S 584 195 100 
DISTURB C4A 1432 627 99.6 
NFERT C3A 1117 446 99.6 
NFERT C3AN 1101 396 100 
NFERT C3PN 1250 270 100 
NFERT C4A 1082 420 99.4 
ORG ANNUALS 1562 1240 96.1 
ORG C3A 1429 988 97.6 
ORG C3AN 1116 280 100 
ORG C4A 1104 257 100 
ALL ALL 1016 316 99.3 

N2O CROP C3A 3997 3695 98.1 
CROP C3AN 3558 3206 100 
CROP C3PN 4878 3154 98.8 
CROP C4A 5446 3537 93.9 
DISTURB C3A 4041 4052 100 
DISTURB C3AN 3434 4304 96 
DISTURB C4A 4357 2500 100 
NFERT C3A 3351 2106 100 
NFERT C3AN 2586 1351 100 
NFERT C4A 4070 1921 95.8 
ORG C3A 4088 1918 97.6 
ORG C4A 5774 2030 93.3 
ALL ALL 4171 2695 97.4 
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9 Model validation outputs for use in CAR SEP uncertainty 
calculations 

Follows Model Requirements, Section 3.5 

When the model is used for crediting in project CAR1459 according to CAR SEP requirements, an 
uncertainty deduction will be computed using the methods described in CAR SEP Appendix D.2, using 
the final parameter set presented in Section 10. When running the model for crediting, the ensemble of 
simulations for a given datapoint will consist of 176 DayCent-CR simulations, which are then combined 
with draws from the random effect and residual variance distributions to give one posterior prediction for 
each unique combination of parameter states in the stored posterior. These are then summarized to 
quantify uncertainty in the estimate of total emission reductions for the project. These parameter sets are 
provided with supporting files in the file “thinned_posteriors_DayCentCR_1.1.0_val3.csv”. A comparison 
of full and thinned posteriors is provided in Appendix D. 
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10 Evaluation of final parameter set 
After evaluating the model fitting procedure via 5-fold cross-validation, the final parameter set to be used 
for crediting was generated by applying the Bayesian calibration procedure to the entire dataset of 
observations with none held out. To obtain in-sample-predictions, random draws were taken of the 
random site and site-by-year random intercepts, which is aligned with our approach for making out-of-
sample predictions; the best unbiased linear predictors were not used for the random intercepts.  

The resulting posterior distributions from this final step are very similar to the distributions obtained 
during cross-validation and are saved for use when running the model for credits. Final parameters are 
summarized in Appendix A and parameters summarized by fold are in Appendix C. The performance of 
the model is reported here when fitting the validation data using the final parameter set (Table 17), but 
this is an evaluation against the training data and may not be representative of model performance at other 
sites. For an estimate of expected model performance at newly observed sites, the metrics computed from 
out-of-sample data during cross-validation are the correct metrics to use, and no other sections of this 
report are derived from models run with the final parameter set. 

Table 17. Comparison of model performance across all PCs and CFGs between cross validation and final parameter sets. All 
statistics except coverage are in units of g C m−2 for SOC or g N ha-1 for N2O. 

Bias Coverage (%) MSE (x 106) RMSE 

SOC (g C m−2) 

Cross Validation 28.6 99.3 1.58 1140 

Final Parameter Set 14.44 99.3 1.47 1125 

N2O (g N ha-1) 

Cross Validation 55.8 97.4 24.7 4171 

Final Parameter Set 76.7 97.3 23.0 4057 
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10.1 Model Performance with SOC parameter set 

Figure 4. Model predictions versus measurements of SOC change in all practice categories and crop types, obtained during 
cross-validation (left image) and with final parameter set (right image). Error bars show 90 percent prediction intervals. 

Figure 5. Histogram of model residuals (predicted - observed) for change in SOC in all studies used for model validation 
across all practices and crop types, obtained during cross-validation and with final parameter set. 
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Table 18. Comparison of model bias in each PC x CFG category during cross-validation and with the final parameter set. 

PC CFG MSE x106 

CV 
MSE x106 

Full 
RMSE 
CV 

RMSE 
Full 

Full RMSE 
< CV 
RMSE? 

CROP C3A 1.1 1.1 1016 1025 FALSE 
CROP C3AN 1.1 1.1 983 986 FALSE 
CROP C3PN 1.5 1.3 1161 1105 TRUE 
CROP C3S 0.625 0.637 760 777 FALSE 
CROP C4A 1.2 1.1 1007 1002 TRUE 
DISTURB C3A 0.963 1.0 935 963 FALSE 
DISTURB C3AN 1.1 1.2 971 1005 FALSE 
DISTURB C3S 0.378 0.424 584 633 FALSE 
DISTURB C4A 2.4 2.4 1432 1434 FALSE 
NFERT C3A 1.5 1.3 1117 1076 TRUE 
NFERT C3AN 1.4 1.3 1101 1061 TRUE 
NFERT C3PN 1.6 1.5 1250 1195 TRUE 
NFERT C4A 1.4 1.3 1082 1089 FALSE 
ORG ANNUALS 4.0 2.6 1562 1348 TRUE 
ORG C3A 3.0 2.1 1429 1268 TRUE 
ORG C3AN 1.3 1.2 1116 1070 TRUE 
ORG C4A 1.3 1.2 1104 1067 TRUE 
ALL ALL 1.6 1.5 1140 1125 TRUE 
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10.2 Model Performance with N2O parameter set 

Figure 6. Model predictions versus measurements of N2O emission change in all practice categories and crop types, 
obtained during cross-validation (left image) and with final parameter set (right image). Error bars show 90 percent 
prediction intervals. 

Figure 7. Histogram of model residuals (predicted - observed) for change in N2O emission in all studies used for model 
validation across all practices and crop types, obtained during cross-validation and with final parameter set 
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Table 19. Comparison of model bias in each PC x CFG category during cross-validation and with the final parameter set. 

PC CFG MSE x106 
CV 

MSE x106 

Full 
RMSE 
CV 

RMSE 
Full 

Full RMSE < 
CV RMSE? 

CROP C3A 29.5 30.0 3997 4005 FALSE 
CROP C3AN 22.8 19.2 3558 3405 TRUE 
CROP C3PN 33.6 33.3 4878 4826 TRUE 
CROP C4A 42.1 40.7 5446 5366 TRUE 
DISTURB C3A 32.5 33.1 4041 4065 FALSE 
DISTURB C3AN 29.6 23.3 3434 3213 TRUE 
DISTURB C4A 25.2 23.3 4357 4261 TRUE 
NFERT C3A 15.6 13.0 3351 3124 TRUE 
NFERT C3AN 8.4 8.3 2586 2561 TRUE 
NFERT C4A 20.2 18.7 4070 3955 TRUE 
ORG C3A 20.3 16.7 4088 3743 TRUE 
ORG C4A 37.4 36.4 5774 5714 TRUE 
ALL ALL 24.7 23.0 4171 4057 TRUE 
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11 Restrictions on application of model 
N2O flux is strongly driven by interactions between soil nitrogen pools and physical conditions such as 
temperature and soil water content, so large errors in simulation of these quantities are likely to mean 
modeled N2O fluxes are unreliable (Parton et al., 2001). Therefore, as a quality control step, DayCent-
CR’s outputs are checked for acceptable nitrogen and water balance: 

• Mineral soil nitrogen is typically a small proportion of total soil nitrogen (Schulten and Schnitzer,
1998), so modeled N2O emissions will not be used for crediting when modeled mineral nitrogen
exceeds 30 percent of total soil nitrogen, which exceeds the pool of even potentially
mineralizable nitrogen in most soils (Nendel et al., 2019).

• Nitrogen losses to surface water and groundwater by runoff and leaching from cropland is
typically between 5 to 50 kilograms per hectare in the United States (White et al., 2015). When
DayCent-CR predicts nitrogen losses to water that exceed 100 kilograms per hectare the model
will not be applied for N2O crediting.

• Nitrogen cycling and transport is sensitive to hydrologic processes (e.g., soil moisture,
infiltration), therefore modeled N2O outcomes will not be applied when all water supplied
through precipitation and/or irrigation is lost to evaporation and transpiration (i.e., no predicted
runoff or infiltration) (Potter et al., 2006).

In previous validation reports, the model underestimated uncertainty under select combinations of 
conditions that were otherwise valid:  

• DayCent 1.0 showed too little uncertainty for very large changes in SOC, and therefore restricted
the valid range of the model to changes smaller than 5,000 g C m-2 (Indigo Ag, 2021).

• DayCent-CR 1.0.2 showed too little uncertainty at short timescales for only the ORG PC, and
therefore applied a variance inflation factor of 1.36 to observations with organic amendments.
(Indigo Ag, 2022).

In this report, uncertainty coverage of both SOC and N2O appears adequate across both time (Appendix 
E) and effect size, so neither of these restrictions is needed for DayCent-CR 1.1.0.

It is important to note that, while the calibrated DayCent-CR model parameters generally fit well, some 
have edge-hitting tendencies and correlations that may limit the model's predictive accuracy, particularly 
when extrapolated beyond the calibration dataset. These behaviors indicate areas where the model could 
be improved, either by refining parameter priors or addressing potential structural limitations. As a result, 
predictions for SOC and N2O should be limited to only CFG and practice changes that are directly 
validated in this report. Future model developments will aim to address these constraints to improve the 
model's robustness and expand its applicability. 
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B Declaration of Practices 

 
Table B1: Practice effects considered additional in this project and the associated practice categories 

Practice Effect Practice Category 
New cover crop adoption CROP 
Longer duration of cover crops through delayed 
termination 

CROP 

Longer duration of cover crops through earlier 
planting 

CROP 

Adding a legume species to existing cover crop 
mix 

CROP 

Adding new crops to rotation CROP 
Tillage reduction through number of passes DISTURB 
Tillage reduction through delayed tilling DISTURB 
Tillage equipment/intensity change DISTURB 
N fertilizer reduction NFERT 
Change in N fertilizer application method NFERT 
Change in N fertilizer form NFERT 
Change in N fertilizer product with stabilizers or 
inhibitors 

NFERT 

Change in N fertilizer application timing NFERT 
Substitute synthetic N with organic amendments  NFERT and ORG 

 

 

 



Appendix C: Sampler Diagnostics

Here we present figures and tables that illustrate the MCMC algorithim used to fit parameters during the five-fold
cross-validation.

For each fold, the following figures and tables are shown:

• Plots of marginal densities for each model parameter, colored by chain.

• Trace plots for each parameter, colored by chain.

• Plots of marginal densities of variance parameters.

• Plot of Gelman-Rubin statistic, R̂.

• Summary statistics of model parameter marginal posterior distributions.

• Summary statistics of variance parameter marginal posterior distributions.

Then we present variograms of between-site correlations of SOC pools N2O fluxes, and model residuals.
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C.1 Fold 1

Figure C1: Marginal densities colored by Monte Carlo chain for fold 1.

2



Figure C2: Traceplots for fold 1 (DayCent calibration parameters).
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Figure C3: Marginal densities of variance parameters colored by Monte Carlo chain for fold 1.

Figure C4: Gelman-Rubin (R) convergence criteria (i.e. shrinkage factors) for the DayCent calibration parameters and
fold 1.
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Table C1: Summary statistics of marginal posterior distributions of the calibrated DayCent-CR model parameters for fold
1 with 5th percentile, mean, median, 95th percentile and the standard deviation.

Parameter 5th percentile 95th percentile Mean median Standard deviation
DAMRMN 6.4627 26.6329 15.522 14.5692 6.5035
DEC_5_2 0.0859 0.1434 0.115 0.1152 0.0176
P1CO2A_2 0.1141 0.2249 0.1606 0.1554 0.036
P2CO2_2 0.5165 0.6674 0.5867 0.5836 0.0477
PMCO2_1 0.625 0.6975 0.6675 0.6686 0.0243
PMCO2_2 0.3657 0.555 0.4442 0.4332 0.0617
PS1CO2_2 0.7235 0.7949 0.7687 0.7749 0.0253
TEFF1 13.0135 19.9753 16.2024 16.0369 2.1623
TEFF2 0.0741 0.2673 0.1685 0.1641 0.0621
Till_Eff 6.1044 7.6912 6.8217 6.7815 0.518
VARAT12(1,1) 13.6337 16.8401 15.5738 15.7918 1.0062
WEFF2 10.1177 14.562 12.625 12.7649 1.4261

Table C2: Random effects for the calibration dataset.
Parameter Variable 5th percentile 95th percentile Mean Median Standard deviation
σsite-year N2Oflux 0.325055 0.335709 0.329984 0.329779 0.003351
σsite N2Oflux 0.416062 0.471354 0.441674 0.440403 0.017058
σ N2Oflux 0.406224 0.412065 0.408898 0.408818 0.001762
σsite-year SOC 0.062794 0.066108 0.064338 0.064208 0.001232
σsite SOC 0.053054 0.066261 0.057494 0.056064 0.005988
σ SOC 0.057852 0.061259 0.059484 0.059441 0.001064
ν SOC 0.006158 0.008207 0.007133 0.0071 0.000643
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C.2 Fold 2

Figure C5: Marginal densities colored by Monte Carlo chain for fold 2.
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Figure C6: Traceplots for fold 2 (DayCent calibration parameters).
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Figure C7: Marginal densities of variance parameters colored by Monte Carlo chain for fold 2.

Figure C8: Gelman-Rubin (R) convergence criteria (i.e. shrinkage factors) for the DayCent calibration parameters and
fold 2.
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Table C3: Summary statistics of marginal posterior distributions of the calibrated DayCent-CR model parameters for fold
2 with 5th percentile, mean, median, 95th percentile and the standard deviation.

Parameter 5th percentile 95th percentile Mean Median Standard deviation
DAMRMN 7.4344 28.3121 18.5014 18.6014 6.7373
DEC_5_2 0.0818 0.1577 0.1205 0.1216 0.024
P1CO2A_2 0.1117 0.2424 0.175 0.1733 0.0422
P2CO2_2 0.5026 0.5803 0.5331 0.5295 0.0265
PMCO2_1 0.5586 0.6886 0.6377 0.6476 0.0446
PMCO2_2 0.3571 0.5099 0.4225 0.4132 0.0485
PS1CO2_2 0.6279 0.7899 0.7201 0.7285 0.0543
TEFF1 12.3879 20.98 15.9303 15.3337 2.8008
TEFF2 0.0542 0.144 0.0879 0.0801 0.0304
Till_Eff 6.0702 7.3071 6.5715 6.5234 0.423
VARAT12(1,1) 11.4736 16.4448 13.9196 13.9727 1.5893
WEFF2 8.613 14.6181 11.8761 11.9663 1.8787

Table C4: Random effects for the calibration dataset.
Parameter Variable 5th percentile 95th percentile Mean Median Standard deviation
σsite-year N2Oflux 0.325129 0.336646 0.329356 0.328425 0.003574
σsite- N2Oflux 0.389779 0.424757 0.40511 0.403882 0.010825
σ N2Oflux 0.435847 0.441353 0.438255 0.438052 0.00169
σsite-year SOC 0.06397 0.068515 0.06587 0.065659 0.001454
σsite- SOC 0.074559 0.102356 0.08557 0.083871 0.009063
σ SOC 0.053042 0.055316 0.054012 0.053921 0.000711
ν SOC 0.010833 0.012281 0.011528 0.011509 0.00044
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C.3 Fold 3

Figure C9: Marginal densities colored by Monte Carlo chain for fold 3.
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Figure C10: Traceplots for fold 3 (DayCent calibration parameters).
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Figure C11: Marginal densities of variance parameters colored by Monte Carlo chain for fold 3.

Figure C12: Gelman-Rubin (R) convergence criteria (i.e. shrinkage factors) for the DayCent calibration parameters and
fold 3.

12



Table C5: Summary statistics of marginal posterior distributions of the calibrated DayCent-CR model parameters for fold
3 with 5th percentile, mean, median, 95th percentile and the standard deviation.

Parameter 5th percentile 95th percentile Mean Median Standard deviation
DAMRMN 8.651 28.499 19.1439 19.5106 6.3542
DEC_5_2 0.0879 0.1525 0.1195 0.1193 0.0213
P1CO2A_2 0.1039 0.1798 0.1354 0.1317 0.0246
P2CO2_2 0.5331 0.7642 0.6494 0.6491 0.0739
PMCO2_1 0.6269 0.6974 0.6676 0.6718 0.0234
PMCO2_2 0.3582 0.5183 0.4272 0.4187 0.0536
PS1CO2_2 0.7227 0.7959 0.7663 0.7698 0.0241
TEFF1 12.6543 21.0392 16.6792 16.7136 2.6511
TEFF2 0.0546 0.1193 0.081 0.0764 0.0216
Till_Eff 6.3225 9.3565 7.6482 7.5313 0.9455
VARAT12(1,1) 11.5944 16.7136 14.1809 14.2527 1.6186
WEFF2 6.2722 11.9343 8.5229 8.1274 1.9181

Table C6: Random effects for the calibration dataset.
Parameter Variable 5th percentile 95th percentile Mean Median Standard deviation
σsite-year N2Oflux 0.258152 0.270373 0.263844 0.263643 0.003717
σsite N2Oflux 0.522189 0.560075 0.538748 0.53743 0.01174
σ N2Oflux 0.35261 0.359333 0.35534 0.354947 0.002108
σsite-year SOC 0.058034 0.06097 0.059197 0.058953 0.000968
σsite SOC 0.087471 0.112421 0.096831 0.095078 0.008519
σ SOC 0.051957 0.057201 0.054395 0.05432 0.001622
ν SOC 0.006771 0.009473 0.008076 0.008033 0.000809
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C.4 Fold 4

Figure C13: Marginal densities colored by Monte Carlo chain for fold 4.
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Figure C14: Traceplots for fold 4 (DayCent calibration parameters).
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Figure C15: Marginal densities of variance parameters colored by Monte Carlo chain for fold 4.

Figure C16: Gelman-Rubin (R) convergence criteria (i.e. shrinkage factors) for the DayCent calibration parameters and
fold 4.
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Table C7: Summary statistics of marginal posterior distributions of the calibrated DayCent-CR model parameters for fold
4 with 5th percentile, mean, median, 95th percentile and the standard deviation.

Parameter 5th percentile 95th percentile Mean Median Standard deviation
DAMRMN 6.1831 24.9235 14.3041 14.0528 6.0002
DEC_5_2 0.0889 0.1422 0.1165 0.1163 0.0173
P1CO2A_2 0.103 0.1919 0.1365 0.128 0.0292
P2CO2_2 0.5171 0.7242 0.6051 0.591 0.0666
PMCO2_1 0.6366 0.6955 0.6715 0.676 0.0199
PMCO2_2 0.3527 0.4477 0.3921 0.3848 0.0323
PS1CO2_2 0.7316 0.7959 0.7699 0.773 0.0212
TEFF1 12.2527 19.2856 14.9725 14.4064 2.3161
TEFF2 0.0825 0.2848 0.1878 0.189 0.0673
Till_Eff 6.1585 8.1109 7.0263 6.953 0.6633
VARAT12(1,1) 12.7113 16.7688 15.0089 15.1893 1.3474
WEFF2 6.7579 12.0662 9.2586 9.1526 1.6918

Table C8: Random effects for the calibration dataset.
Parameter Variable 5th percentile 95th percentile Mean Median Standard deviation
σsite N2Oflux 0.459323 0.486587 0.47178 0.470911 0.00871
σsite-year N2Oflux 0.331578 0.343953 0.337443 0.337189 0.003919
σ N2Oflux 0.432903 0.438151 0.435351 0.435274 0.001647
σsite SOC 0.081736 0.095246 0.086957 0.086028 0.005023
σsite-year SOC 0.067835 0.071062 0.068885 0.068519 0.001442
σ SOC 0.059938 0.063396 0.061497 0.061418 0.001035
ν SOC 0.005219 0.007287 0.006244 0.006228 0.000631
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C.5 Fold 5

Figure C17: Marginal densities colored by Monte Carlo chain for fold 5.
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Figure C18: Traceplots for fold 5 (DayCent calibration parameters).
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Figure C19: Marginal densities of variance parameters colored by Monte Carlo chain for fold 5.

Figure C20: Gelman-Rubin (R) convergence criteria (i.e. shrinkage factors) for the DayCent calibration parameters and
fold 5.
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Table C9: Summary statistics of marginal posterior distributions of the calibrated DayCent-CR model parameters for fold
5 with 5th percentile, mean, median, 95th percentile and the standard deviation.

Parameter 5th percentile 95th percentile Mean Median Standard deviation
DAMRMN 5.8489 24.4795 14.0914 12.9609 6.0412
DEC_5_2 0.0765 0.1382 0.1066 0.1071 0.0194
P1CO2A_2 0.1095 0.2381 0.1749 0.1806 0.0417
P2CO2_2 0.5055 0.6784 0.576 0.5657 0.0574
PMCO2_1 0.5664 0.6965 0.6461 0.6574 0.044
PMCO2_2 0.3569 0.527 0.4303 0.4213 0.0565
PS1CO2_2 0.6914 0.7971 0.758 0.7666 0.0348
TEFF1 15.904 21.6695 19.3965 19.8128 1.879
TEFF2 0.0576 0.1472 0.0933 0.0884 0.0283
Till_Eff 6.0739 7.6187 6.6147 6.4464 0.5536
VARAT12(1,1) 12.0511 16.7693 14.5698 14.6379 1.4996
WEFF2 8.0481 14.2867 11.2317 11.2663 1.9305

Table C10: Random effects for the calibration dataset.
Parameter Variable 5th percentile 95th percentile Mean Median Standard deviation
σsite-year N2Oflux 0.343257 0.351935 0.347194 0.346923 0.002687
σsite N2Oflux 0.457225 0.492323 0.472203 0.470689 0.011282
σ N2Oflux 0.419633 0.428893 0.423362 0.422867 0.002817
σsite-year SOC 0.069462 0.075156 0.071997 0.071761 0.001917
σsite SOC 0.084876 0.096371 0.090047 0.089641 0.004227
σ SOC 0.058933 0.060439 0.059671 0.05967 0.000461
ν SOC 0.005135 0.006729 0.005812 0.005744 0.000512
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C.6 Variograms
For this assessment, we calculated site-level averages for the residuals of differences in change in SOC stock (modeled -
measured) and N2O emission (modeled - measured) as well as for the initial SOC stock and the average N2O flux. We
then generated variograms for each of the previous quantities using approximately 75 equally sized bins.
Both sample and model variograms are shown in Figures C21, C22, C23, and C24. All model variograms use a Gaussian
semivariance, and we set the nuggets to the sample semivariance in the bin with the smallest separation distance. We
estimated the sample and model semivariance using the gstat package (Gräler, Pebesma, and Heuvelink, 2016 ) for R (R
Core Team, 2021 ). To compute separation distances, geographic coordinates were projected onto the North American
Datum 83 (NAD83) for the continental United States (EPSG: 6350); while two of the 31 site locations in this analysis
are located in Canada (Swift Current and Lethbridge), the Canadian sites are near the border with the United States.

Figure C21: Variogram of the residuals of log(initial SOC stock). The grey dots show the sample semivariance, and the
black line shows an estimated gaussian model semivariance.
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Figure C22: Variogram of the residuals of differences in change in SOC stock (modeled - measured). The grey dots show
the sample semivariance, and the black line shows an estimated gaussian model semivariance.

23



Figure C23: Variogram of the residuals of log(mean N2O flux + ϵ), where ϵ shifts mean N2O flux > 0. The grey dots
show the sample semivariance, and the black line shows an estimated gaussian model semivariance
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Figure C24: Variogram of the residuals of differences in change in N2O flux (modeled - measured). The grey dots show
the sample semivariance, and the black line shows an estimated gaussian model semivariance.
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Appendix D: Thinned vs Full Posteriors

As noted in Section 3.1 “Description of model calibration”, we thin the post-
burn-in chains by seven to keep 176 posterior draws from the final model fit (i.e.,
the model fit to all of calibration data). We use these 176 posterior draws in
crediting. This section compares the distribution of these 176 posterior draws
(after thinning) versus the full post-burn-in draws.

Figure 1 shows the marginal densities of the full and thinned post-burn-in
chains. Cross-referencing the model description in Section 3.1 “Description of
model calibration”, in Figure 1 site refers to σsite, siteyr referes to σsite-year, and
Resi refers to σresidual.
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Table 1: Summary statistics of the thinned posterior distributions of the cal-
ibrated DayCent-CR model parameters and seven variance parameters with
mean, SD, effective sample size (ESS), and R̂.

Variable Full Thinned Full Thinned Full Thinned Full Thinned

Mean Mean SD SD ESS ESS R̂ R̂

DEC5(2) 0.12 0.12 0.023 0.022 36 44 1.2 1.2

P1CO2A(2) 0.16 0.16 0.039 0.04 43 64 1.1 1.1

P2CO2(2) 0.57 0.57 0.056 0.053 56 87 1.1 1.1

PMCO2(1) 0.67 0.67 0.025 0.024 64 84 1.1 1.1

PMCO2(2) 0.4 0.4 0.041 0.04 79 99 1.1 1

PS1CO2(2) 0.77 0.77 0.029 0.03 67 94 1.1 1.1

TEFF(1) 17 17 2.7 2.8 51 87 1.1 1.1

TEFF(2) 0.094 0.095 0.035 0.035 41 77 1.2 1.1

Till Eff 6.8 6.7 0.72 0.72 36 66 1.2 1.1

WEFF(2) 9.9 9.8 1.9 2 58 83 1.1 1.1

VARAT12(1,1) 15 15 1.5 1.5 43 110 1.1 1.1

DAMRMN(1) 16 17 7.3 7 45 61 1.1 1.1

σsite, n2o 0.46 0.46 0.01 0.0091 220 160 1 1

σsite-yr, n2o 0.32 0.32 0.0026 0.0025 110 130 1.1 1

σresidual, n2o 0.41 0.41 0.0013 0.0011 73 100 1.1 1.1

σsite, soc 0.084 0.084 0.0053 0.0051 63 78 1.1 1.1

σsite-yr, soc 0.067 0.067 9.8e-4 6.7e-4 130 170 1 1

σresidual, soc 0.058 0.058 9.1e-4 8.3e-4 90 80 1.1 1.1

νsoc 0.0072 0.0072 5.9e-4 5.7e-4 100 82 1.1 1.1
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Figure 1: Marginal densities of the full and thinned posteriors from the final
model fit.
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Appendix E: Confidence interval width and coverage rates as
function of time

As a consequence of the exponential residual variance model (see Section 4), the residual variance grows with increasing
time since the start of an experiment. As a result, confidence intervals tend to become wider as the time since the start
of an experiment increases.

Figure E1: Confidence intervals for change in SOC as a function of number of years since experiment start. Dots show
observed changes. Confidence intervals are blue if they contain the observed value and red if they do not contain the
observed value. The x-axis is on the log scale, and random noise is added to the x-axis placement (i.e. the x-axis placement
is jittered) for visual discernment.

To assess whether the calibrated model remains conservative when predicting SOC over the shorter periods of time
used during crediting, Tables E1–E3 show the coverage rates across all folds for each PC x CFG category when filtering to
point-pairs with measurements on or before 3, 5, and 10 years since experiment start, respectively. PC x CFG categories
with no experimental data in these respective time ranges are not shown. Tables E1–E3 also show 95% Agresti-Coull
confidence intervals for the coverage rates (Agresti and Coull, 1998).

As seen in Tables E1–E3, all categories have higher than 90% coverage over 3, 5, and 10 year time periods.
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Table E1: Number of observed datapoints falling inside and outside of modeled 90% prediction intervals across all folds of
the calibration/validation process filtered to point-pairs with ≤ 3 years between experiment start and measurement.Lower
and upper 95% confidence bounds are shown for coverage rates.

PC CFG n nin nout coverage(%) lower upper
CROP C3A 59 59 0 100 95 100
CROP C3AN 59 59 0 100 95 100
CROP C3PN 12 12 0 100 80 100
CROP C3S 71 71 0 100 96 100
CROP C4A 55 55 0 100 95 100
DISTURB C3A 20 20 0 100 87 100
DISTURB C3AN 23 23 0 100 88 100
DISTURB C3S 37 37 0 100 93 100
DISTURB C4A 47 47 0 100 94 100
NFERT C3A 19 19 0 100 86 100
NFERT C3AN 18 18 0 100 86 100
NFERT C3PN 3 3 0 100 45 100
NFERT C4A 48 47 1 97.92 91 100
ORG Annuals 5 5 0 100 60 100
ORG C3A 2 2 0 100 33 100
ORG C3AN 2 2 0 100 33 100
ORG C4A 5 5 0 100 60 100

Table E2: Number of observed datapoints falling inside and outside of modeled 90% prediction intervals across all folds of
the calibration/validation process filtered to point-pairs with ≤ 5 years between experiment start and measurement.Lower
and upper 95% confidence bounds are shown for coverage rates.

PC CFG n nin nout coverage(%) lower upper
CROP C3A 99 98 1 98.99 95 100
CROP C3AN 93 92 1 98.92 95 100
CROP C3PN 18 18 0 100 86 100
CROP C3S 95 95 0 100 97 100
CROP C4A 63 62 1 98.41 93 100
DISTURB C3A 26 26 0 100 90 100
DISTURB C3AN 32 32 0 100 91 100
DISTURB C3S 39 39 0 100 93 100
DISTURB C4A 63 63 0 100 96 100
NFERT C3A 25 25 0 100 89 100
NFERT C3AN 18 18 0 100 86 100
NFERT C3PN 3 3 0 100 45 100
NFERT C4A 49 48 1 97.96 91 100
ORG Annuals 7 7 0 100 69 100
ORG C3A 3 3 0 100 45 100
ORG C3AN 2 2 0 100 33 100
ORG C4A 6 6 0 100 65 100
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Table E3: Number of observed datapoints falling inside and outside of modeled 90% prediction intervals across all folds of
the calibration/validation process filtered to point-pairs with ≤ 10 years between experiment start and measurement.Lower
and upper 95% confidence bounds are shown for coverage rates.

PC CFG n nin nout coverage(%) lower upper
CROP C3A 205 204 1 99.51 98 100
CROP C3AN 206 205 1 99.51 98 100
CROP C3PN 25 25 0 100 89 100
CROP C3S 156 156 0 100 98 100
CROP C4A 127 126 1 99.21 96 100
DISTURB C3A 47 47 0 100 94 100
DISTURB C3AN 42 42 0 100 93 100
DISTURB C3S 43 43 0 100 94 100
DISTURB C4A 127 127 0 100 98 100
NFERT C3A 63 62 1 98.41 93 100
NFERT C3AN 38 38 0 100 93 100
NFERT C3PN 3 3 0 100 45 100
NFERT C4A 95 94 1 98.95 95 100
ORG Annuals 18 18 0 100 86 100
ORG C3A 9 9 0 100 74 100
ORG C3AN 4 4 0 100 54 100
ORG C4A 9 9 0 100 74 100
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Appendix F: Proposal for disambiguating pooled measurement uncertainty

(PMU)

F.1 Background

The Model Requirements version 1.1a defines the pooled measurement uncertainty (PMU) by Eq. (1):

PMU =

√√√√∑k
i=1(ni − 1)σ2

i∑k
i=1(ni − 1)

(1)

where i indexes treatment pairs, σ2
i is the standard error of the difference in measured emissions between treatments, k

is the number of treatment pairs for which standard errors are reported in the literature for both treatments in the pair,
and ni is the number of emissions measurements reported for each treatment. Note that in Eq. (1), σ2

i is the standard
error, not standard deviation.

However, Eq. (1) is ambiguous when the two treatments being compared do not have the same number of measurements.
In particular, let ni1 and ni2 be the number of emissions measurements taken for the first and second treatment in treatment
pair i. If ni1 ̸= ni2, it is not clear what value to use for ni in Eq. (1). This situation did not arise in the first validation
report, but it does occur in the second validation report.

F.2 Proposal

We propose to resolve this ambiguity by following the common practice of computing a pooled variance by weighting
individual variances by their respective degrees of freedom. In this case (and assuming the true variances in the two
treatments being compared are equal) the degrees of freedom of σ2

i is ni1 + ni2 − 2. Therefore the PMU would be
calculated using Eq. (2):

PMU =

√√√√∑k
i=1(ni1 + ni2 − 2)σ2

i∑k
i=1(ni1 + ni2 − 2)

(2)

where ni1 and ni2 are the number of emissions measurements taken in the first and second treatment, respectively, in
treatment pair i, and ni1+ni2−2 is the degrees of freedom of σ2

i . Eq. (2) estimates the standard deviation of the difference
in mean emissions under the assumptions that: 1) the true mean differences are not the same across treatment pairs, but
2) the true variances are the same.

The impact on PMU estimates using Eq. (2) instead of Eq. (1) is minimal. For example, during model validation of
DayCent-CAR 1.0.2 for Indigo Ag U.S. Project No. 1 (CAR1459) the overall PMU of SOC across all practice changes
and CFGs is 623.46 using Eq. (2) (see Sections 8.3 and 8.4), and 623.43 using Eq. (1) and randomly setting ni = ni1 or
ni = ni2 when ni1 ̸= ni2. The advantage of Eq. (2) over Eq. (1) is that Eq. (2) is not ambiguous in how to calculate the
PMU when ni1 ̸= ni2, and it is better grounded in statistical theory and practice (Rosner 2006).
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